- 博客(40)
- 资源 (1)
- 收藏
- 关注
原创 智能访客到店视频推荐系统——PART-I (访客视频挖掘多输出模型——AI预测到门店顾客收入、年龄、婚姻状态)
本文以访客到店视频,解析AI预测顾客收入、年龄、婚姻状态这三项,构建访客视频用户挖掘-精准产品组合推荐系统的PART1。from keras import layersfrom keras import Inputfrom keras.models import Modelvocabulary_size = 50000num_income_groups = 10posts_input ...
2020-04-19 15:29:33 569 1
原创 【图像识别Bert版】运用AI解决样本过少的问题,提高图像识别效果——加入VGG16预训练基(卷积神经网络)
现实中,存在一些深度学习任务,某些样本的数据集样本量较少,面对这样的情况,我们该怎么做呢?通常有如下几种方式:1数据增强,通过图像裁剪,水平翻转等方式丰富有限的样本集。2使用在大规模多种类数据集上训练好的AI模型,例如VGG16,ResNet,作为预训练模型,使得小样本集在通用的特征提取器运作。3由于数据集较少,在构建训练模型时,可以加入Dropout层,避免样本局限带来的过拟合...
2020-04-15 23:05:50 1876
原创 算法工程师/数据分析师投简历时,必掌握的三个小技巧
互联网数据分析师/数据建模/算法工程师投递简历时,可以借鉴以下三个技巧:PART1.理解岗位关键词,针对理想公司的目标岗位,分析岗位需要的技能和经验,重点捕捉关键能力词:例如SQL能力,业务分析理解能力,数据建模调参调优能力。针对自己的简历,按照关键技能词语,检查已经具备并且在简历里描述出来的有哪些。还有哪些尚有不足的地方,或者简历中没有描述出来的地方,注重突出是否需要的关键项简历中呈现出来。...
2020-03-22 16:38:12 1133
原创 tensorflow2.0系列5-基于keras构建深度学习分类模型 【tensorflow2.0教程 常用操作集合系列5】
【AI算法推荐】:tensorflow2.0建模教程系列【导读】在tensorflow2.0建模系列教程中,前四节我们用代码演绎了:系列1:如何用tf2.0进行自定义层网络的设计(add.weight)系列2:如何用tf2.0进行自定义模型的设计(Model)系列3:如何用tf2.0实现loss函数和参数调优(loss gradient optimizer)系列4:.如何用tf2.0...
2019-09-19 18:43:39 2221
原创 【tensorflow2.0教程 常用操作集合系列4】损失函数正则化—tf2.0如何解决模型过拟合问题
在tensorflow2.0建模系列教程中,前三节我们用代码演绎了:1如何用tf2.0进行自定义层网络的设计(add.weight)2如何用tf2.0进行自定义模型的设计(Model)3如何用tf2.0实现loss函数和参数调优(loss gradient optimizer)本节系列四主要是教大家如何运用tf2.0来解决神经网络模型训练过程中常出现的过拟合问题。我们都知道模型训练出来经常...
2019-09-17 13:44:25 4706
原创 bert中文文本情感分类 微博评论挖掘之Bert实战应用案例-文本情感分类
Bert模型全称Bidirectional Encoder Representations from Transformers,主要分为两个部分:1训练语言模型(language model)的预训练(pretrain)部分,2训练具体任务(task)的fine-tune部分。Bert在NLP领域横扫了11项任务的最优结果,可以说是现今最近NLP中最重要的突破。 相比较之前的Word Emb...
2019-07-15 18:25:27 8086 11
原创 Nvidia最新基于大规模知识库文本预测模型原理(文本知识内涵)
基于大规模知识库的大规模文本生成训练模型与普通的文本摘要技术/机器翻译模型(seq2seq)不同,要训练具有广泛内容要义的文本,精确的表达文本主题的意思,包含知识解释融合在内的模型,需要针对输入文本,借助大规模知识文库,进行文本中词汇的知识检索,譬如金融常用文本中涉及的并购/拆借/股权融资等专业知识领域,如何翻译或生成符合金融场景和内涵的文本至关重要,对于生成结果的质量和可解释性。那么如何把大规模的知识库加入到文本训练模型中,提高翻译与生成文本的精度/内涵呢?最新NVIDIA技术团队研究推出适用于该
2020-10-27 10:41:32 653
原创 【推荐】前沿智能视频分析深度学习算法框架-NVIDIA DEEPSTREAM5.0 【原理介绍】
英伟达最新深度视频分析流5.0推出,在此框架下,系统性解决了如何构建智能视频分析应用程序,如何完成视频中图像数据的预处理,数据张量的输入/推断预测/添加元标签特征/汇总元数据/共享/输出张量等工作。本文重点介绍DEEPSTREAM5.0 的trition功能。tensorRT偏向于张量化大规模计算优化,基于总体算法模型的提前预估和资源分配,trition同样有预测推算等功能,并且前置到预处理阶段,本文重点剖析trition如何在图像数据处理中的工作机制。无论是寻求平衡产品分销和优化交通的仓库,还是工厂
2020-08-27 16:33:51 2089
原创 AI+工业制造的核心点应用梳理(一)
1.AI业内生产制造流程分析识别并及时更新生产设备、生产工具、制造流程、制造指标2.识别预测机器寿命维护与更换调试、技术更新记录收集机器特性、使用模态、维护模态、操作人员及人机互动信息、机器故障与维修历史记录、机器主动与被动维护操作、明细特性和其他因素来建立机器寿命与资产预测型维护更换调试统计模型。3.AI知识库建立,促进操作间和管理室经理的技术知识应用型掌握摸底操作间员工与管理室员工的需求和技术知识掌握需求程度,鼓励创新型激励+应用导向的吸收型培训方案+AI企业知识资产(包含机器知识与操作信
2020-05-09 18:32:03 1262
原创 变分VAE 编码器网络《一 编码过程:代码实现》
import kerasfrom keras import layersfrom keras import backend as Kfrom keras.models import Modelimport numpy as npimg_shape = (28, 28, 1)batch_size = 16latent_dim = 2input_img = keras.Input(s...
2020-04-27 23:05:11 481
原创 AI双摄摄像头的视觉照片处理模型
from keras import layersfrom keras import applicationsfrom keras import Inputxception_base = applications.Xception(weights=None,include_top=False)left_input = Input(shape=(250, 250, 3))right_inp...
2020-04-26 10:59:24 624
原创 提升长文识别的速度
NLP中,针对过长的文章,可以使用一维卷积+GRU来处理from keras.models import Sequential from keras import layers from keras.optimizers import RMSprop model = Sequential() model.add(layers.Conv1D(32, 5, activation='rel...
2020-04-23 15:41:14 268
原创 门店视频解析DTW《二》——用户画像数据挖掘与销售解决方案
到访客户的订购空调价格purchase price预测技术~x = layers.Conv1D(128, 5, activation='relu')(embedded_posts)x = layers.MaxPooling1D(5)(x)x = layers.Conv1D(256, 5, activation='relu')(x)x = layers.Conv1D(256, 5, acti...
2020-04-20 21:54:36 351
原创 智能访客DTW视频解析《二》——潜在购买空调价格预测
到访客户的订购空调价格purchase prx = layers.Conv1D(128, 5, activation='relu')(embedded_posts)x = layers.MaxPooling1D(5)(x)x = layers.Conv1D(256, 5, activation='relu')(x)x = layers.Conv1D(256, 5, activation='...
2020-04-20 21:50:52 302
原创 智能访客到店视频推荐系统——PART-I (AI访客视频挖掘——精准预测到门店顾客收入、年龄、婚姻状态)
本文以访客到店视频,解析AI预测顾客收入、年龄、婚姻状态这三项,构建访客视频用户挖掘-精准产品组合推荐系统的PART1。from keras import layersfrom keras import Inputfrom keras.models import Modelvocabulary_size = 50000num_income_groups = 10posts_input ...
2020-04-19 15:26:16 461
原创 自然语言处理之AI双向循环Bidirectional-LSTM
文本理解的方式越丰富越好,对同样的文本数据产生不同的表达方法(编码方式),组合型表达,不管是正序型循环表示还是倒序型表示,数据表达差异越多,提供足够的视角去看待数据本身,挖掘出来不同层面和角度的蕴含在数据中的信息。特别是时序在文本中有相对重要位置,对理解句子意义本身占据较大重要性时。在keras中,双向循环LSTM是蕴含在Bidirectional层中的,我们只要调用keras.layers层...
2020-04-17 15:17:14 3996
原创 运用AI进行数据预处理加速 ——英伟达 DALI平台
多种多样的结构化和文本/图像等非结构化数据,譬如矩阵操作/标准化normalize/图像水平翻转等,深度学习应用程序需要复杂的多阶段预处理数据管道。此类数据管道涉及在CPU上执行的计算密集型操作。例如,诸如:从磁盘加载数据,解码,裁剪,随机调整大小,颜色和空间扩充以及格式转换等任务主要在CPU上执行,从而限制了训练和推理的性能和可伸缩性。DALI当前支持计算机视觉任务,例如图像分类,识别和对象...
2020-04-14 23:24:43 1375
原创 CAD多角度剖面3D建模与深度学习神经网络的复合研究构想
空间坐标 GIS系统建筑空间设计CAD俯视图侧面图抽取拐点图不同方位的截面图深度学习神经网络 结合应用链接:程序猿如何构建自己的思维模式–解读色不异空,空不异色_AI工匠Book-CSDN博客 https://blog.csdn.net/weixin_37479258/article/details/105088838...
2020-04-13 13:16:09 643
原创 【图像CNN识别】Keras之父提出可替代Conv2D的深度可分离卷积——快速提升视觉识别模型
《AI工匠BOOK》持续更新AI算法与最新应用,如果您感兴趣,欢迎关注AI工匠(AI算法与最新应用前沿研究)。 在Keras之父的深度学习书中,设计了一种让图像识别任务性能提高几个百分点的网络层,该网络层不仅可以替代 Conv2D ,并可以让模型更加轻量、用较少的可训练权重参数、速度更快,该网络层正是深度可分离卷积(depthwise separable convolution)层( Sepa...
2020-04-03 18:14:12 1329
转载 中国科大在固液界面力学研究方面取得重要进展
中国科大在固液界面力学研究方面取得重要进展时间:2020-04-01浏览:20001805年,英国科学家托马斯·杨(Thomas Young)在研究润湿和毛细现象时描述了界面张力和接触角的定量关系。两百多年来,杨氏方程已成为润湿领域最基本的理论之一。虽然基于热力学能量最小化方法可推导得到该方程,但是研究者一直致力于从力学角度解释杨氏方程,并验证其在纳米尺度的有效性。该领域仍存在许多关键科学问题...
2020-04-02 09:35:34 384
原创 RL强化学习算法90行代码快速实战 DQN代码分层讲解
强化学习算法已经有各种实现平台,譬如基于tensorflow的OpenAI Baselines,rllib,基于Pytorch的 PyTorch DRL ,rlpyt。最新推荐一个轻量快速实现的RL框架,由清华大学的本科生推出,相比于之前的RL平台,有一下几点优势:实现简洁,轻巧:1500行代码搞定模块化:多种不同API可供调用,轮子多就是好调用方便,速度快,3秒钟实现一个PG算法RL算...
2020-04-01 11:11:42 2052
原创 【推荐】快速超好用的RL强化学习框架——天授1500行代码实现DQN /PG/A2C
强化学习算法已经有各种实现平台,譬如基于tensorflow的OpenAI Baselines,rllib,基于Pytorch的 PyTorch DRL ,rlpyt。最新推荐一个轻量快速实现的RL框架,由清华大学的本科生推出,相比于之前的RL平台,有一下几点优势:实现简洁,轻巧:1500行代码搞定模块化:多种不同API可供调用,轮子多就是好调用方便,速度快,3秒钟实现一个PG算法RL算...
2020-04-01 00:16:54 3991 1
原创 AI四大热门的应用方向与AI智能系统产品孵化讲解(算法原理结构与代码解读)
智能客服:原理:场景:技术算法模型:代码案例:代码解析:NLP/RNN/LSTM/BERT/SEQ2SEQ智能交通:Open CV/CNN/GCN/Caps-Net /YOLO智能商业:智能安防:智能建筑:...
2020-03-26 09:37:24 2655
原创 胶囊网络可以PK掉CNN吗?//——暂时不能 胶囊网络的不足点思考
卷积神经网络的不足:1.缺少数据点的空间方位信息与组合对应关系信息2.应对图片的角度变化以及方向扭转上的调整识别率不高。胶囊网络:相对于CNN网络对于数据信息的标量表达,绛囊网络增加了信息的方向与大小,实现信息向量化表达,不会遗漏图片的空间信息。...
2020-03-21 14:24:53 3010
转载 GCN (Graph Convolutional Network) 图卷积网络解析
最近研究图卷积,看到一篇言简意赅的解析文章,包括GNC层代码自定义。版权声明:本文转载自CSDN博主「邢翔瑞」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。原文链接:https://blog.csdn.net/weixin_36474809/article/details/89316439目的:图卷积网络近两年大火,博主实习需要用到。接下来几个月就会在图...
2020-03-13 22:11:13 2283
原创 【推荐】热门的图神经网络GCN原理剖析 +源码分享
图神经网络近来已火很久,重点是针对关系型数据(关系型数据最早的表示即原始的图网络:节点,边,权重)展开深度学习,进行标签分类等数据工作。以上是GCN的核心工作原理类似于图像压缩工程:1.图像像素矩阵化2.傅里叶变换(拉普拉朗斯矩阵)3.使用特征值作为权重 选取排名前K个特征值代表的维度(类似于PCA降维后保留的核心维度)作为坐标轴,转换分解原图数据4.以上三步得到类似于CNN 卷积层C...
2020-03-11 23:53:45 1016
原创 NLP自然语言处理入门到精通高效指南
PART????1.自然语言处理常用操作 NLP :一、标题文本预处理包含:1.过滤非中文字符2.文本分词并进行词性标注3.去除常见中文停用词,并存储分词后结果二、 文本特征词向量化表示:1.词袋模型 Coutvictorizer2.TF-IDF特征提取三、调用sklearn 分类器建模,GridsearchCV调参1.逻辑回归分类 LogisticRegression2.超参数...
2020-03-02 21:55:22 1055
原创 非技术/数据出身转型人工智能的几个tips
1.常见的数据分析工具spss spssmoderler matlabpython sklearntensorflow(当前为2.0版本)keras2常见的算法梳理机器学习算法十大经典算法()深度学习算法 CNN RNN LSTM TRANSFORMER GNN图神经网络拓展:音频数据 视频数据...
2020-03-02 21:15:31 233
原创 tensorflow2.0系列-6 基于keras构建CNN交通标识图像检测模型【tensorflow2.0实战教程 图像识别模型代码】
【AI算法推荐】:tensorflow2.0建模教程系列【导读】在tensorflow2.0建模系列教程中,前四节我们用代码演绎了:系列1:如何用tf2.0进行自定义层网络的设计(add.weight)系列2:如何用tf2.0进行自定义模型的设计(Model)系列3:如何用tf2.0实现loss函数和参数调优(loss gradient optimizer)系列4:.如何用tf2.0...
2019-09-20 17:58:22 4543 8
原创 tensorflow2.0 建模教程 常用操作集合系列3—Model自定义模型的训练和参数调优loss gradient optimizer
在完成上篇tensorflow2.0 建模教程系列2 自定义模型的设计后,我们要灌入训练数据进行训练了,这就涉及到训练过程中最重要的损失函数、梯度下降和调参调优。在tf2.0版本中,最重要的图计算方法 with tape.GradientTape() as tape,可以设计完成整个过程。1损失函数我们可以用loss_fn表达:loss_fn=tf.keras.losses.Categori...
2019-09-16 12:07:17 1787
原创 tensorflow2.0建模教程 常用操作集合系列2—Model自定义模型的设计(多层Layer嵌套成一个完整的计算网络模型)
在完成上篇自定义层设计后,下面我们把多层自定义神经网络嵌套成为一个完整的计算网络模型,代码示例如下:#自定义层设计MydenseClass Mydense(layer): def _init_(self,units): super(Mydense,self)._init_() self.units=uints def build(slef,inp...
2019-09-14 15:20:27 1405
原创 安装太慢【 推荐】tensorflow2.0清华镜像 ——附tensorflow2.3.0【新版本】介绍与安装教程
一般安装 tensorflow2.0操作如下:pip install tensorflow==2.0-alpha0但是速度太慢 所以找了下国内tensorflow2.0的镜像https://pypi.tuna.tsinghua.edu.cn/simple安装试试:pip install -i https://pypi.tuna.tsinghua.edu.cn/simple tensor...
2019-09-12 14:31:37 16881 1
原创 tensorflow2.0 rc版使用教程 常用操作集合系列1——Layer自定义层的设计add.weight(w,b权重设置)
今天分享的是如何使用tensorflow2.0展开自定义层Layer的设计。注意点1权重初始化如下:w_initial=tf.random_normal_initializer()b_initial=tf.zeros_initializer()Class Mydense(Layers.layer):#例如Linear层 y=wa+b def _init_(self,input_di...
2019-09-12 12:52:57 7496 1
转载 快速上手Tensorflow2.0版本安装教程+深度学习训练
本文转载自:专知链接地址:https://mp.weixin.qq.com/s?src=11×tamp=1567181900&ver=1822&signature=t5n2AjpXgGKf51ckc386VEdV5Ie14eJaWVep6clBtpcfKo3KZ5xpuwNQNSKkyFvyM6bjip8Z-af6drF5De2BxVqQnkSXxgN4g1Re...
2019-09-08 22:38:18 1271
转载 Tensorflow2.0版本高效实用指南快速上手3个建议——Tensor2.0版本与1.0版本有哪些改动之处
本文转载youlan博客:Tensorflow2.0版本高效指南为提高 TensorFlow 的工作效率,TensorFlow 2.0 进行了多项更改,包括删除了多余的 API,使API更加一致统一,例如统一的 RNNs (循环神经网络),统一的优化器,并且Python 运行时更好地集成了 Eager execution 。许多 RFC 已经对 TensorFlow 2.0 的这些更改给出了...
2019-09-08 21:57:41 4953
转载 最新tensorflow2.0 RC 版【Tensorflow2.0rc版本安装】
TensorFlow 2.0终于迎来Release Candidate版本,新特性一览,附完整更新日志本文转载自:专知链接地址:http://mp.weixin.qq.com/s?src=11×tamp=1567181115&ver=1822&signature=t5n2AjpXgGKf51ckc386VEdV5Ie14eJaWVep6clBtpcP8VYfg...
2019-09-08 21:57:02 2745
原创 安装Tensorflow2.0rc版本精选合集【最新RC版本+1.0增加修改功能说明+安装教程+常用操作指南+CNN图像识别mnist手写数字识别+Resnet网络+GAN训练】
TensorFlow 2.0版本精选相关安装与实战代码集合:【一、RC新增版本】TensorFlow 2.0版本来啦 【最新】RC版本(Release Candidate)重磅推出~https://blog.csdn.net/weixin_37479258/article/details/100168082【二、相对1.0版本,快速清晰2.0版本改动部分和功能调用详解】适合已经有1.0版本基...
2019-09-08 20:24:16 915
原创 python做snowNLP文本情感分类代码示例
一、snowNLP简介和作用snownlp为python版的文本分析工具。是受到了TextBlob的启发而写的,可以方便的处理中文文本内容。支持的中文自然语言操作包括:中文分词词性标注情感分析文本分类转换成拼音繁体转简体提取文本关键词提取文本摘要tf,idfTokenization文本相似二、代码示范下面是snownlp分词、词性标注、情感分析代码如下:from s...
2019-08-12 15:48:04 2880 2
原创 python数据挖掘实战 -数据预处理篇(数据可视化-空值填充-哑变量编码)
数据从业务中来,到业务中去商业数据如何真正服务业务,解决具体的业务场景?废话不多说,LIST如下:1.了解业务收集业务背景信息,了解业务发展现阶段,弄清楚公司现在面对的核心市场、核心人群、产品推广和营收的核心目标以及当前重点的问题。2.了解数据盘点现有数据底层,每家公司的核心数据资产不同,拥有的数据底层也不同。电商产品用户的转化路径数据、购买数据占主要部分,社区类的产品用户评论,非结构...
2019-08-09 21:18:22 1743 3
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人