距离上一篇文章已经有快两年的时间了。。
至于为什么。。我也不知道为什么,就当是忘了吧
稍微把之前的文章的奇怪标题改了一下
以后估计会常常在这里更新
————————————华丽的分割线————————————
φ φ φ是什么?
φ φ φ,又称欧拉函数,或者phi,具体的定义是“小于等于n的正整数中与n互质的数的个数”
注意 φ ( 1 ) = 1 φ(1)=1 φ(1)=1,质数p的 φ φ φ值为p-1
欧拉函数是一个非常重要的内容,性质也很多,所以很多数论题都直接拿这个函数来出题
Q:那么,您刚才说的这个欧拉函数,它好算吗?
A:它不是好不好算的问题,他真的是那种,那种很常见的那种。。
好了我们停止玩梗,我们来讲一讲怎么求 φ φ φ
我们考虑互质,两个数互质意味着什么?就是没有共同的质因子。我们可以显然发现,连续p个数中,p-1个没有p这个因子,而1个有。
所以我们就可以将要求 φ φ φ的数质因数分解,设一共有m个质因数,分别为 p 1 , p 2 , . . . , p m p_1,p_2,...,p_m p1,p2,...,pm
对于第一个质因数,我们可以发现 n p 1 \frac{n}{p_1} p1
【算法详解-数学】(1)φ的基本知识
最新推荐文章于 2025-02-17 21:35:02 发布