线性代数

本文详细介绍了矩阵的基本概念及运算方法,包括行列式的定义、余子式与代数余子式的计算方式、矩阵转置的概念,以及如何利用代数余子式计算矩阵的伴随矩阵和逆矩阵。同时,还探讨了利用这些理论解决线性方程组的方法。
摘要由CSDN通过智能技术生成

1.行列式。D他是一个矩阵的模

2.余子式:D(i,j)他是矩阵去掉i行,j列剩下的矩阵的模。

3.代数余子式:A = (-1)^(i+j) * D(i,j)

4.有个推论是:行列式D等于某一行(列)的值a(i,j)*A(i,j)的和

D = a(i,1)*A(i,1) + a(i,2)*A(i,2) +...+a(n,1)*A(n,1)

5.矩阵A的转置A^(T). i,j倒置

6.|A|模用4来算,是个值。

7.M(i,j)因子式:去掉i行j列后的矩阵

8.A*伴随矩阵:首先得到A(代数余子式),所有元素转换为 ~代数余子式~参考3, 然后转置一下

9.A'逆矩阵。 A*/|A|

10.单位矩阵:E,性质

AA'=A'A=E,    AA*=A*A=|A|E,    EB=B

11.求解AB=C,这是n介一次方程式,A=n*n,B=n*1,C=n*1.

AB=C转换A'AB=A'C转换EB=A'C转换B=A'C.因为第9条,所以|A|不能=0



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值