1.行列式。D他是一个矩阵的模
2.余子式:D(i,j)他是矩阵去掉i行,j列剩下的矩阵的模。
3.代数余子式:A = (-1)^(i+j) * D(i,j)
4.有个推论是:行列式D等于某一行(列)的值a(i,j)*A(i,j)的和
D = a(i,1)*A(i,1) + a(i,2)*A(i,2) +...+a(n,1)*A(n,1)
5.矩阵A的转置A^(T). i,j倒置
6.|A|模用4来算,是个值。
7.M(i,j)因子式:去掉i行j列后的矩阵
8.A*伴随矩阵:首先得到A(代数余子式),所有元素转换为 ~代数余子式~参考3, 然后转置一下
9.A'逆矩阵。 A*/|A|
10.单位矩阵:E,性质
AA'=A'A=E, AA*=A*A=|A|E, EB=B
11.求解AB=C,这是n介一次方程式,A=n*n,B=n*1,C=n*1.
AB=C转换A'AB=A'C转换EB=A'C转换B=A'C.因为第9条,所以|A|不能=0