- 博客(26)
- 收藏
- 关注
原创 数据结构和算法概述
定义数据结构(data structure)是带有结构特性的数据元素的组合。它研究的是数据的逻辑结构和数据的物理结构以及它们之间的相互关系,并对这种结构定义相适应的运算,设计出相应的算法,并确保经过这些运算以后所得到的新结构仍保持原来的数据类型。简而言之,数据结构是相互之间存在一种或多种特定关系的数据元素的集合,即带结构的数据元素的集合。结构就是指数据元素之间存在的关系,分为逻辑结构和存储结构。数据的逻辑结构和物理结构是数据结构的两个密切关系的方面,同一逻辑结构可以对应不同的存储结构。算法的设计取决于
2020-11-23 12:53:13 201
原创 [Python基础语法]表达式、语句和缩进
这篇教程将向您展示关于Python表达式、语句和缩进的知识。Python表达式表达式是值(对象),变量和操作符(或叫运算符)的组合。单独的一个值是一个表达式,单独的变量也是一个表达式。表达式通常是有一个值作为结果。使用表达式,我们可以执行诸如加法、减法、连接等操作。它还可以调用计算结果的函数。>>> ((10 + 2) * 100 / 5 - 200)40.0>...
2019-03-18 20:39:52 596
原创 [Python基础语法]注释
这篇教程将向您展示关于Python注释的知识。注释就是其字面意思,即对程序进行补充说明,但是不影响程序执行。注释使程序更具可读性和可维护性。Python注释支持三种注释方式:单行注释多行注释文档注释单行注释单行注释以井号(#)开头,并自动以EOL(行尾)结束。>>> # 输出Hello, World!... print("Hello, World!")H...
2019-03-18 20:37:41 327
原创 [Python基础语法]关键字、标识符和变量
这篇教程将向您展示关于python关键字、标识符和变量的知识。Python关键字Python关键词是Python保留的具有特定含义的特殊词语,用于执行某些操作。在Python中,这样的关键字有33个。Python关键字是区分大小写的。```>>> help("keywords")Here is a list of the Python keywords. Ente...
2019-03-16 14:21:15 429
原创 [Python环境搭建]Python解释器
使用HomeBrew安装Python 3,会自动添加软链接: /usr/local/bin/python3。/usr/local/bin本身就在PATH路径上。这样我们可以直接在命令行输入命令python3。$ ls -l /usr/local/bin/python3lrwxr-xr-x 1 root wheel 69 Sep 30 10:14 /usr/local/bin/python...
2019-03-15 20:53:36 222
原创 [Python环境搭建]Mac上安装Python3
这篇教程将向您展示如何再Mac OS X计算机上安装Python 3。目前有多种办法可以安装Python 3,常见的有两种:通过官网下载安装(本篇教程不做介绍)使用Homebrew安装(强烈推荐)检查Python版本最新版本的Mac OS X是10.13(High Sierra),预安装了Python 2.7。$ python --versionPython 2.7.15...
2019-03-14 20:50:53 214
原创 矩阵代数(七)- 维数与秩
小结坐标系子空间的维数秩与可逆矩阵定理坐标系选择子空间H\boldsymbol{H}H的一个基代替一个存粹生成集的主要原因是,H\boldsymbol{H}H中的每个向量可以被表示为基向量的线性组合的唯一表示。假设β={b1,⋯ ,bp}\boldsymbol{\beta}=\{ \boldsymbol{b_1},\cdots,\boldsymbol{...
2019-03-09 18:13:34 4674
原创 矩阵代数(六)- 子空间
小结Rn\mathbb{R}^{n}Rn的子空间矩阵的列空间与零空间子空间的基Rn\mathbb{R}^{n}Rn的子空间定义   Rn\;\mathbb{R}^{n}Rn中的一个子空间是Rn\mathbb{R}^{n}Rn中的集合H\boldsymbol{H}H,具有一下三个性质:a.  零向量属于Hb.&Thic...
2019-03-09 18:11:07 825
原创 矩阵代数(五)- 矩阵因式分解
小结LU\boldsymbol{LU}LU分解LU\boldsymbol{LU}LU分解算法矩阵A\boldsymbol{A}A的因式分解是把A\boldsymbol{A}A表示为两个或更多个矩阵的乘积。LU\boldsymbol{LU}LU分解设A\boldsymbol{A}A是m×nm \times nm×n矩阵,它可以行换简为阶梯形而不必行对换(此后,我们将处理一般情形),...
2019-03-09 18:10:28 4046
原创 矩阵代数(四)- 分块矩阵
小结分块矩阵分块矩阵运算分块矩阵的逆分块矩阵矩阵A=[30−159−2−5240−31−8−6317−4]\boldsymbol{A} = \left[\begin{array}{ccc|cc|c}3 & 0 & -1 & 5 & 9 & -2 \\ -5 & 2 &...
2019-03-09 18:09:05 1268
原创 矩阵代数(二)- 矩阵的逆
小结矩阵的逆A−1\boldsymbol{A}^{-1}A−1求A−1\boldsymbol{A}^{-1}A−1的方法矩阵的逆一个n×nn \times nn×n矩阵A\boldsymbol{A}A使可逆的,若存在一个n×nn \times nn×n矩阵C\boldsymbol{C}C使CA=I\boldsymbol{C}\boldsymbol{A}=\boldsymbol{I}C...
2019-03-05 20:28:26 780
原创 矩阵代数(三)- 可逆矩阵的特征
小结可逆矩阵定理可逆线性变换可逆矩阵定理定理8(可逆矩阵定理)设A\boldsymbol{A}A为n×nn \times nn×n矩阵,则下列命题是等价的,即对某一特定的A\boldsymbol{A}A,它们同时为真或同时为假。a.  Aa.\;\boldsymbol{A}a.A是可逆矩阵。b.  Ab.\;\boldsy...
2019-03-05 20:26:44 1562
原创 矩阵代数(一)- 矩阵运算
小结和与标量乘法矩阵乘法矩阵的乘幂矩阵的转置若A\boldsymbol{A}A是m×nm \times nm×n矩阵,即有mmm行nnn列的矩阵,则A\boldsymbol{A}A的第iii行第jjj列的元素用ai​ja_i\!_jaij表示,称为A\boldsymbol{A}A的(i,j)(i,j)(i,j)元素。A\boldsym...
2019-03-03 16:15:54 1588
原创 线性方程组(十)- 小结
本篇文章对线性方程组知识进行一个小结。线性方程组线性方程组:{a1​1x1+⋯+a1​nxn=b1⋯​⋯⋯​⋯am​1x1+⋯+am&NegativeThinSpac...
2019-03-02 18:33:40 535 1
原创 线性方程组(九)- 线性变换的矩阵
小结线性变换的矩阵R2\mathbb{R}^{2}R2中的集合线性变换满射与单射线性变换的矩阵I2=[1001]\boldsymbol{I_2}=\begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}I2=[1001]的两列是e1=[10]\boldsymbol{e_1}=\begin{bmatrix} 1 \\ ...
2019-03-01 20:55:40 1724
原创 线性方程组(八)- 线性变换介绍
小结矩阵变化的定义线性变化的定义矩阵方程Ax=b\boldsymbol{Ax}=\boldsymbol{b}Ax=b和对应的向量方程x1a1+⋯+xnan=bx_1\boldsymbol{a_1}+\cdots+x_n\boldsymbol{a_n}=\boldsymbol{b}x1a1+⋯+xnan=b之间的差别仅仅是记号上的不同。然而矩阵方程Ax=b\boldsymbol{...
2019-02-28 23:33:09 1084
原创 线性方程组(七)- 线性无关
小结向量组的线性无关矩阵各列的线性无关一个或两个向量的集合的线性无关两个或多个向量的集合的线性无关向量组的线性无关Rn\mathbb{R}^{n}Rn中一组向量{v1,⋯ ,vp\boldsymbol{v_1,\cdots,v_p}v1,⋯,vp}称为线性无关的,若向量方程仅有平凡解。向量组(集){v1,⋯ ,vp\bo...
2019-02-27 20:48:50 3026
原创 线性方程组(六)- 线性方程组的应用
小结经济学中的齐次线性方程组配平化学方程式经济学中的齐次线性方程组假设一个国家的经济体系可以划分为许多部门,如各种制造、交通、娱乐和服务业。假设我们知道每个部门的年度总产出,并精确知道该总产出是如何在其他经济部门进行分配或“交易”的。称一个部门产出的总货币价值为产出的价格。列昂惕夫证明了下面的结论:存在能够指派给各个部门总产出的平衡价格,使得每个部门的总收入恰好等于它的总支出。假...
2019-02-26 22:45:51 5517 2
原创 线性方程组(五)- 线性方程组的解集
小结齐次线性方程组的定义。解集的参数向量形式。非齐次线性方程组的解。齐次线性方程组线性方程组称为齐次的,若它可写成Ax=0\boldsymbol{Ax}=\boldsymbol{0}Ax=0的形式,其中A\boldsymbol{A}A是m×nm{\times}nm×n矩阵而0\boldsymbol{0}0是Rm\mathbb{R}^{m}Rm中的零向量。这样的方程组至少有一个解,即...
2019-02-25 23:16:08 2619 1
原创 线性方程组(四)- 矩阵方程
小结矩阵方程的定义矩阵方程的求解矩阵方程、向量方程和线性方程组拥有相同的解集Ax\boldsymbol{Ax}Ax的计算、行-向量规则和性质Ax=b\boldsymbol{Ax} = \boldsymbol{b}Ax=b若A\boldsymbol{A}A是m×nm \times nm×n矩阵,它的各列为a1,⋯ ,an\boldsymbol{a_1,\...
2019-02-24 19:57:04 1910
原创 线性方程组(三)- 向量方程
小结向量的定义向量方程的定义和求解Span{v}\boldsymbol{Span\{v\}}Span{v}与Span{u,v}\boldsymbol{Span\{u,v\}}Span{u,v}的几何解释R2\mathbb{R}^{2}R2中的向量仅含一列的矩阵称为&列向量,或简称向量。向量表示一组有序数。包含两个元素的向量表示为:w=[w1w2]\boldsymbol{w...
2019-02-23 16:54:02 3282
原创 线性方程组(二)- 行简化与阶梯形矩阵
行化简与阶梯形矩阵矩阵中非零行或列指矩阵中至少包含一个非零元素的行或列。非零行的先导元素是指该行中最左边的非零元素。一个矩阵称为阶梯形(或行阶梯形)矩阵,若它有一下三个性质:每一非零行都在每一零行之上。某一行的先导元素所在的列位于前一先导元素的右边。某一先导元素所在列下方元素都是零。若一个阶梯形矩阵还满足一下性质,则称它为简化阶梯形(或简化行阶梯形)矩阵。每一非零行的先导元素是1...
2019-02-22 18:03:25 16954 2
原创 线性方程组(一)
线性方程组包含变量x1,x2,⋯ ,xnx_1,x_2,\cdots,x_nx1,x2,⋯,xn的线性方程是形如a1x1+a2x2+⋯+anxn=ba_1x_1 + a_2x_2+ \cdots + a_nx_n = ba1x1+a2x2+⋯+anxn=b的方程,其中b与系数a1,a2,⋯&am
2019-02-21 10:59:25 4323
原创 线性方程组目录
引言线性方程组是线性代数的核心。1节和2节介绍求解线性方程组的一个系统方法。3节和4节指出线性方程组等价于向量方程与矩阵方程。这种等价性把向量的线性组合问题化为线性方程组的问题。学习笔记(持续更新中) 线性方程组 行化简与阶梯形阵列 向量方程 矩阵方程 线性方程组的解集 线性方程组的应用 线性无关 线性变换介绍 ...
2019-02-15 13:24:51 485
原创 线性代数目录
相关书籍学习笔记(持续更新中) 线性代数中的线性方程组 矩阵代数 行列式 向量空间 特征值与特征向量 正交性和最小二乘法 对称矩阵和二次型 向量空间的几何学 ...
2019-02-15 10:18:17 2544
原创 人工智能,你准备好了吗?
人工智能,你准备好了吗?三分钟,带你了解世界工业革命演变史第一次工业革命是机械化,它开创了以机器代替劳动的时代。第二次工业革命是电气化,它促成了世界殖民体系的形成。第三次工业革命是自动化,它开创了空间、原子能、计算机技术发展的新纪元。第四次工业革命是智能化,它将促成ABC(人工智能、大数据、云服务)等技术的形成。每一次工业革命的改变,所带来的是社会劳动力的重新分配,跟着趋势...
2019-02-15 10:07:09 352
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人