【动手学深度学习】05 线性代数(个人向笔记)

1. 线性代数

向量的一些公式

  • ∣ ∣ a ∣ ∣ ||a|| ∣∣a∣∣ 表示向量 a 的范数,课上没有讲范数的概念
    在这里插入图片描述

  • 其中第一条为求向量的二范数

  • 第四条表示如果a为标量,那么向量 ∣ ∣ a ⋅ b ∣ ∣ ||a·b|| ∣∣ab∣∣ 的长度等于 ∣ a ∣ ⋅ ∣ ∣ b ∣ ∣ |a|·||b|| a∣∣b∣∣ 的长度
    在这里插入图片描述

矩阵

矩阵的一个比较重要的范数:
在这里插入图片描述
对称矩阵的转置等于其本身

特征向量

对于一个矩阵来说,如果它乘以一个向量后该向量的方向未改变,那么这个向量被称为特征向量。代替这个矩阵的值被称为特征值:
在这里插入图片描述

碎碎念

这部分个人感觉就是讲一些比较生硬的概念,这部分我只把我觉得可能会重要一些的内容记下来了。如果后续再遇到了这些内的话再去查阅资料就行了


2. 线性代数的实现

  • 标量由只有一个元素的张量表示
    在这里插入图片描述
  • 向量就是由标量值组成的列表,可以通过索引访问元素
    在这里插入图片描述
  • 可以通过 len 来返回张量的长度,shape 来返回张量的形状
    在这里插入图片描述
  • 可以用 T 来转置一个矩阵
    在这里插入图片描述
  • 可以通过 clone 来分配新内存来复制
    在这里插入图片描述
  • 矩阵和标量相加相当于给标量每个元素加上该标量,相乘同理
    在这里插入图片描述
  • 可以通过 sum() 来获取总和,可以指定维度,还可以通过 mean() 来求平均值,同样可以指定维度
    在这里插入图片描述
  • 可以在计算总和时保持维度不变
    在这里插入图片描述
    在这里插入图片描述
  • 假如参数为False会怎么样呢
    在这里插入图片描述
  • cumsum 可以进行累加求和
    在这里插入图片描述
    在这里插入图片描述
  • 可以用 torch.dot 来计算元素的点积,也可以先按位乘然后求和来计算点积
    在这里插入图片描述
  • 视频中有 torch.mv 但是没有解释,还好我有gpt
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
  • 可以用 torch.norn() 求二范数
    在这里插入图片描述
  • 求L1范数需要先取绝对值后求和
    在这里插入图片描述

按特定轴求和

  • 假设有一个五行四列的矩阵,shape 为 [5, 4] ,那么其中的 axis 对应就分别为 0, 1,意思是按列的 axis 为 0 ,按行的 axis 为 1
  • 如果按 axis = 0 求和,那么就会把 5 这一维消掉,如果按 axis = 1 求和,那么就会把 4 这一维消掉。但是如果 keepdims=True 还是可以保留维度的,只不过把它变成1,比如 [1, 4] 或者 [5, 1]。总结就是按哪一维求和就消掉哪个维度。
  • 可以对多个维度求和,结果和上面的描述相同
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值