package java_jianzhioffer_algorithm;
import java.util.Scanner;
/**
* 题目:请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字符的路径。
* 路径可以从矩阵中的任意一个格子开始,每一步可以在矩阵中向左,向右,向上,向下移动一个格子。
* 如果一条路径经过了矩阵中的某一个格子,则之后不能再次进入这个格子。
* eg:例如 a b c e s f c s a d e e 这样的3 X 4 矩阵中包含一条字符串"bcced"的路径
* 但是矩阵中不包含"abcb"路径,因为字符串的第一个字符b占据了矩阵中的第一行第二个格子之后,路径不能再次进入该格子。
* @author hexiaoli
*思路:
*回溯法:用一个boolean型数组标记是否走过该元素
*/
public class HasPath {
public static boolean hasPath(char[] matrix, int rows, int cols, char[] str) {
//边界条件
if(matrix == null|| rows < 1|| cols < 1 || str == null) {
return false;
}
//创建一个boolean型数组标记是否走过该元素
boolean[] flag = new boolean[matrix.length];
//循环遍历二维数组,找到起点等于str第一个元素的值,再递归判断四周是否有符合条件的
for(int i =0;i<rows;i++) {
for(int j =0;j<cols;j++){
if(judge(matrix,rows,cols,i,j,flag,str,0))
return true;
}
}
return false;
}
//judge(初始矩阵,矩阵行数,矩阵列数,索引行坐标i,索引纵坐标j,标志数组
//待判断的字符串,字符串索引初始为0即先判断字符串的第一位)
public static boolean judge(char[] matrix, int rows, int cols,int i ,int j,
boolean[] flag, char[] str,int k) {
//先根据i和j计算匹配的第一个元素转为一维数组的位置
int index = i*cols+j;
//递归终止条件
if(i<0 || j<0 || i>=rows || j>=cols || matrix[index] != str[k] || flag[index] == true)
return false;
//若k已经到达str末尾了,说明之前的都已经匹配成功了,直接返回true即可
if(k == str.length-1) return true;
//要走的第一个位置置为true,表示已经走过了
flag[index] = true;
//回溯,递归寻找,每次找到了就给k加1,找不到,还原
if(judge(matrix,rows,cols,i-1,j,flag,str,k+1) ||
judge(matrix,rows,cols,i+1,j,flag,str,k+1) ||
judge(matrix,rows,cols,i,j-1,flag,str,k+1) ||
judge(matrix,rows,cols,i,j+1,flag,str,k+1) )
{
return true;
}
//走到这,说明这一条路不通,还原,再试其他的路径
flag[index] = false;
return false;
}
public static void main(String[] args) {
char[] matrix = {'a','b','c','e','s','f','c','s','a','d','e','e'};
int rows = 3;
int cols = 4;
char[] str = {'b','c','c','e','d'};
System.out.println(hasPath(matrix,rows,cols,str));
//测试用例设置,1列,1行,所有字母相同,空,多行多列中存在或不存在路径
}
}