CP.12图、网络、关联矩阵

1.图

图经常被应用于各种领域,用结点和边来描述变量之间的关系
在这里插入图片描述

上图是具有4个节点5条边的图,可以用矩阵来表示,这门课里面把矩阵称作关联矩阵,其他地方称作邻接矩阵,总之是个矩阵用来描述边与节点的关系。
A = [ − 1 1 0 0 0 − 1 1 0 − 1 0 1 0 − 1 0 0 1 0 0 − 1 1 ] A=\begin{bmatrix}-1&1&0&0\\0&-1&1&0\\-1&0&1&0\\-1&0&0&1\\0&0&-1&1\end{bmatrix} A= 10110110000110100011
关联矩阵的每一行代表路径,每一列代表节点。例如,第1行 [ − 1 1 0 0 ] \begin{bmatrix}-1&1&0&0\end{bmatrix} [1100]是指路径1从节点1流出,流入节点2,这里将流出表达为“-1”,流入表达为“1”。这是一种有向图,无向图的矩阵表达只有相连或者不相连。

1.1零空间

上图中可以看作是电路节点与电压电流的关系,以此为基础考察矩阵的零空间,也就是 A X = 0 AX=0 AX=0
A X = [ − 1 1 0 0 0 − 1 1 0 − 1 0 1 0 − 1 0 0 1 0 0 − 1 1 ] [ x 1 x 2 x 3 x 4 ] = 0 AX=\begin{bmatrix}-1&1&0&0\\0&-1&1&0\\-1&0&1&0\\-1&0&0&1\\0&0&-1&1\end{bmatrix}\begin{bmatrix}x_1\\x_2\\x_3\\x_4\end{bmatrix}=0 AX= 10110110000110100011 x1x2x3x4 =0
现在问题转换成了求解一组节点电势,能够满足:
A X = [ x 2 − x 1 x 3 − x 2 x 3 − x 1 x 4 − x 1 x 4 − x 3 ] = 0 AX=\begin{bmatrix}x_2-x_1\\x_3-x_2\\x_3-x_1\\x_4-x_1\\x_4-x_3\end{bmatrix}=0 AX= x2x1x3x2x3x1x4x1x4x3 =0
也就是要求解能让各点电势平衡的X。通过MATLAB的rank(A)命令,可以求去矩阵的秩为3,因此有一个自由列, d i m N ( A ) = 1 dimN(A)=1 dimN(A)=1。观察可知第4列是自由列,对应 x 4 x_4 x4是自由变量,赋值 x 4 = 1 x_4=1 x4=1可以解得 X = [ 1 1 1 1 ] X=\begin{bmatrix}1\\1\\1\\1\end{bmatrix} X= 1111
因此矩阵 A A A的零空间是 c X cX cX,说明当各点的电势相等时,各支路上不会有电流。

1.2左零空间

从前面的知识可以知道,左零空间的表达是 A T y = 0 A^Ty=0 ATy=0,矩阵 A T A^T AT有5列, r a n k ( A T ) = 3 rank(A^T)=3 rank(AT)=3,因此左零空间的维度是2。因此 A T A^T AT中有存在2种线性相关的列, A T A^T AT的列就是图中的路径,路径相关代表形成了环路,如节点1,2,3。
A T y = [ − 1 0 − 1 − 1 0 1 − 1 0 0 0 0 1 1 0 − 1 0 0 0 1 1 ] [ y 1 y 2 y 3 y 4 ] = 0 A^Ty=\begin{bmatrix}-1&0&-1&-1&0\\1&-1&0&0&0\\0&1&1&0&-1\\0&0&0&1&1\end{bmatrix}\begin{bmatrix}y_1\\y_2\\y_3\\y_4\end{bmatrix}=0 ATy= 11000110101010010011 y1y2y3y4 =0
y i y_i yi代表支路上的电流,那么方程表征的就是基尔霍夫电流定律了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值