2300年直线公理使初等数学有几百年重大错误:将无穷多各异数轴误为同一轴

黄小宁
2300年前的直线公理:过两异点可画直线;但为何没“曲线公理”:过两点可画曲线?因过两点可画无穷多条曲线。可见2300年前的直线公理是断定过两点只能有一条直线。2300年前的古人认为凡懂什么是直线的人都知过两异点只能画一条直线从而有初中的2300年直线公理,继而有平行公理和平面公理等。
复平面z平移变换为z+n(n是非0自然数)面就使x轴⊂z面沿本身平移变为u=x+n轴。R可几何化为R轴,R轴可沿本身平移变为R′轴,R′轴可沿本身平移变为R″轴,...。
h定理2([1]中的h定理2):数集(一维空间中点集)A保序变为B=A只能是恒等变换。
证:A变为B=A就是变回自己。D={6,8}变为{8}等价于D中的6变为8的同时8变回自己使D失去元素6。集随元的变换而变换,A各元x要如何变才能使各x的像y=y(x)的全体还=A?D={6,8}中的6变为D外数9就使D变为{9,8}≠D,除非同时9又变为6,而6变为9的同时9又变为6的变换等于6没变为9。D要变回自己,其各元x就不可变为D外数而只能由x变为y∈D地变化,即y必还是D中数。6∈D={6,8}变为8就使D失元6而变为D的真子集{8,8},除非...。数集A一元x1(1是下标)变为x2(≠x1)∈A就使A失一元x1,x3变为x1就使失去的元x1又“回来”了,但代价是A又失一元x3,...;这是一对一的。所以A一元x变为y∈A必使A失一元,除非同时y又变为x。{6,8}={8,6}说明D中两元相互交换位置不能使D变为≠D。由此可见A变回自己时A各元x若不变回自己就只能变为别的元y∈A,但此变换只能是“你变为我的同时我又变回你”的两元之间互换位置的换位变化(否则必使A失元)。所以A变为B=A≌A的变换只能有两种:①恒等变换;②A(A中各数互异)中:有的数变回自己有的数与别的数作换位变换,或各数都与别的数作换位变换。①②中的②是不保序变换而只有①是保序变换说明A保序变为B=A只能是恒等变换①。证毕。
R各元x非恒等变换地保序且保距变为y=x+1组成元为y的R′={y}的几何意义可是R轴即x轴各元点x沿x轴正向保距平移变为点y=x+1生成元为点y的y=x+1轴≌x轴即x轴沿本身平移变为y=x+1轴叠压在x轴上。据h定理2x轴≠y轴。2300年直线公理使自有函数概念几百年来数学一直误以为x轴=y+n(n是非0自然数)轴,这是“以井代天”地将无穷多各异数轴误为同一轴。数轴绕其对称中心点旋转360度就得一平面,将各异直线误为同一线自然就会将各异平面误为同一面。中学的平面公理使数学将各异平面误为同一面。
本文实际上是黄小宁的长文《直线公理使初等数学一直将各异直线误为同一线——数集相等定义凸显初数一直将各异假R误为R》的一小部分。
参考文献
[1]黄小宁。初等数学2300年之重大错误:将无穷多各异点集误为同一集——让中学生也能一下子认识3000年都无人能识的直线段[J];考试周刊;2018(71):58。

c879766ca6e64e03b28366f94a82a80f.jpg

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值