2300年直线公理使初等数学有几百年重大错误:R各元x的对应x+0.0001的全体=R
黄小宁
设集A={x}表A各元均由x代表,{x}中变量x的变域是A。其余类推。R可几何化为R轴。因各数x、y可是数轴上点的坐标所以R各元x保距变大为y=x+0.0001=x+c组成元为y的{y}的几何意义可是:R轴即x轴各元点x沿一维空间“管道”g保距平移变为还在g内的点y=x+c生成元为点y的y=x+c轴即x轴沿轴平移变为y=x+c轴(≌x轴)叠压在x轴上。2300年直线公理使自有函数概念几百年来数学一直认定x轴=y轴。其实这是违反数集相等定义的几百年肉眼直观错觉。
知道什么是“一一对应”就知道什么是一一对应相等。
数集相等及近似相等的定义:若A(B)各元x(y)有与之对应相等的元y(x)∈B(A)即A各元x与B各元y可一一对应相等:x↔y=x(恒等对应、变换)则称A=B;若可一一对应相等或近似相等则A≈B(例{3,5,6}≈{3,5,6.001≈6})。集各元x变回自己称为集的恒等变换,各元x变为y=x或≈x称为集的近似恒等变换。本文最关键的论据:若A与B是同一集则A必能恒等变换地变为B=A,即必可有:x↔y=x。
R各元x=h与各对应x+1=h一一对应相等:x=h↔x+1=h,但要注意箭头两边的x不是同一x,此x=h,彼x=h-1,x=h的变域是R。要特别注意:x+1=h的变域是R不等于x+1>x中的x+1的变域是R。
在平移变换:x↔y=x+b(b是正常数,箭头两边的x是同一x)中当且仅当平移距离b=0时才能是恒等变换:x↔y=x+b=x即当且仅当b=0时才能有:各x与各对应y=x+b一一对应相等。
上述x轴各元x与y=x+c轴各元y=x+c≈x一一对应近似相等使y轴≈x轴。各x变为y=x(y≈x或=x)是恒等(近似恒等)变换, x轴近似恒等变换地变为y=x+c(≈x)轴≈x轴。显然R各元x只能与各对应数x+c≈x+0中的x一一对应相等而与各x+c≈x本身一一对应近似相等。可见中学的数集相等及近似相等概念表明x轴沿轴平移变为y=x+b(b是正常数)轴≠x轴,当平移的距离b≈0时y轴≈x轴。