小学数学常识暴露中学数学几百年重大错误:将无穷多各异直线段误为同一线段
黄小宁
直线段是初等数学中的最简单图形。公元前1100年中国人商高同周公的一段对话谈到了勾股定理说明人类认识几何学的直线段起码已有3000多年。这使初等数学中关于直线段的理论是初数中的初数。“科学”共识:说数学对直线段的认识存在重大错误而将无穷多各异直线段误为同一线段的人一定有精神病而在痴人说梦。
设集A={x}表A各元均由x代表,{x}中变量x的变域是A。其余类推。
h定理:数集A保序变为B=A只能是恒等变换。
证:A各数在集内分别都有一定的大小“名次、地位”,例在A={0,1,2}中:2是第一大的数,1是第二大数,0是第三大数;A各元x保序变为3x组成元为3x的{0,3,6}也有第一大、第二大、第三大的元。大小互不同的狗组成集A和B,a(b)是A(B)中第n大的狗,显然若A=B则a和b必是同一狗。任一A={x}各数x保序变为y=y(x)(y是增函数)组成B={y(x)},x∈A在A中的大小“地位”与y(x)∈B在B中的大小地位是一样的(保序变换是保地位变换),显然若A=B则x与y(x)必是同一数即y(x)≡x。所以A保序变为B=A只能是恒等变换。证毕。
由3个点组成的点集A={…}中两端点不动,中点往左偏移但保持在两端点之间就使A变形为没中点的B不≌A;点还是这3个点∈A,但其不保距地改变位置后形成的新点集B与A有不同的“长相”。小学数学起码常识a:任何图≌自己。
复平面z各点z的对应点z^n的全体是z^n(n=3,5,7,…)平面。z面伸缩变换为z^n面就使x轴⊂z面沿本身伸缩变换为u=x^n轴。
数集U可几何化为点集U。如草图所示x轴可沿本身伸缩变换为y=x^3轴。单位直线段U=[0,1]⊂x轴各元点x沿x轴不保距平移变为点y=x^3形成元为点y的线段U′(不≌U)=[0,1]⊂y=x^3轴附着在U上,据小学常识a不全等的图形更不相等,所以U′≠U;数集U各元x变为y=x^3是保序变换,但不是恒等变换,据h定理U′≠U。可见初数几百年函数“起码常识”: U′=U≌U,是将两异直线段误为同一线段的肉眼直观错觉。
U′与U互不≌说明两者大小相同形状(内部形状)不同。骨头的内部形状随骨密度的改变而改变,同样等长的U′与U有不同的内部形状从而是3000年都无人能识的貌似重合的伪二重、伪≌直线段。
以上说明中学几百年“定义域为U=[0,1] ⊂R的y=x^k(正常数k≠1)的值域=U”其实是肉眼直观错觉而将长度均为1的无穷多各互不≌的直线段误为同一线段。