无穷级数=0的必要、充分条件

 

 

 

(通讯:广州市华南师大南区9-303  邮编510631

育人课本及科普书上的重大错误是否及时纠正,与每一个人的切身利益息息相关。

5千多年数学一直认为无穷多个数相加是不能完成的。其实这是极片面认识。例如所有0整数的和H=1-12-23-30,尽管其前n部分和的极限不存在。=1-1+(2-20+0+…,但其各项的数值都是0整数而非都是0。研究各项都是0的级数是没有意义的。可见级数发散≠其所有项的和不存在。同样,发散级数c+H=c+00表示一个数c

稍有一点逻辑推理能力的人都能明白此极显然的客观事实C:若级数的每一项都只有一个它的相反数项同在和式中与之对应(此项与彼项对应就不可与别的项对应了),则和式必=0

各项的数值都是1-1发散级数s=1-1+1-1+… =0注!括号只规定运算次序而没有s=0+0+0+…=0s的各项=0的唯一原因是和式中的1-1一样多。s是否=0完全取决于是否“一样多”而与任何别的因素没有任何关系,而去掉式中的括号对“一样多”没有任何影响,故s=1-1+1-1+...=0。形成鲜明对比的是在等号两边加1或(-1)就打破了1-1一一对应的格局,从而使s±1=0±1=±1≠0!这是小学生都一说就明的最起码常识啊!s=1-1+1-1+…=0的每两项用括号括在一起,就没有一项在括号之外了,即s可表为一双双项的和。非常显然:给s增添一项得

s-1=-1+1-1+1-1+…=-1+0s

中有一个项在括号之外:新增的-1与哪个1配对?在s0中哪有1与这-1配对?故s=1+s-1)中的s-1= -1+1-1+1-...不“一样多”而≠(-1+1+-1+1+...

可见:各级数都是一个个项构成的,但“各级数都是一双双项构成的”就是重大错误了;将能是一双双项构成的级数

称为h型级数,其所有奇数项都必有右邻项与之配对,而h型级数中必有一奇数项无右邻项与之配对。文献[1]证明了若形如{12n…}的集Q的各元n<n+1Q必有最大元。显然若两级数的项一样多,则其必同型。显然对某型级数抽去或添加:奇数个项或非h型级数,得到的级数就是非某型的了。级数的类型的变化说明其项的多少发生了变化。可见在级数w =1+2+3+(所有编号数组成X)的首项左边增添一项得到的级数=1+2+3+(所有编号数组成S的项与w的项不一样多。故在

123nn+1…}=S(代表S内数的y=n+1> n=1,23中数列的所有数组成X

X==123n,…}的各元n头上都有对应数n+1S

中,集S的元与集X的元不一样多,故SX。对此,第4节也有论证。不等式也明确表示有S内数y>X所有数n

几百年不明此理使级数论几百年来一直有重大错误的认识:级数1-1+1-1+1-1+...。如果改变运算次序并把这些项成对组合起来,即如1-1+1-1+…;就得到一个仅以0构成的级数。但是,。(朱梧槚等译《无穷的玩艺》125页,南京大学出版社,1985.4)症结是,在没有证明原级数中的1-1一样多的情况下是不能断定其可=1-1+1-1+…的。

不能见到形如y=1-1+1-1+...x=-1+1-1+1-…的和式就断定其=0,因为y=1+-1+1-1+1-...)和x= -1+1-1+-1+

...),而应当在证明y中的1-1一样多后才能断定y=0。在判断是否“一样多”时须注意:级数的各项都不相同。例如首项的数值=1=第二项的数值,但两项的位置不相同表明其是根本不同的2个项。

s=1-1+1-1+... =0表明和式中的1-1一样多。因为两对应项改变位置只是改变了它们之间的距离或前后关系而没有改变它们的“配偶”关系,故s的各项任意改变位置对“一样多”没有任何改变,所以由事实C

s=1+1+1+…+- 1-1-1 -…=0=s1+s2=s1-s1s11s2=-s1-1一样多即s1=1+1+1+…的各1-s1=s2 的各-1可一一对应结成数偶(1-1。这是小学生都一说就明的最起码常识啊!由此常识得革命结论:

无穷级数s1-s1=0。⑵参见[1]在数学中若c不是数而是无意义的符号,就不可有c-c=0——据此最起码科学常识s中的s1无穷大自然数或超自然数([1]证明了有无穷大正整数n=1+1+1+…>一切有穷大正整数n)。⑶无穷级数s的部分和的极限与其所有项的和是两个根本不同的概念。⑷“无穷多个数相加是不能完成的”是错误认识。

极限论最关键的要弄清楚“任意给定的正数M”中的M是在哪一范围内任意给定的数?是在(11000)内还是在所

有正数内任意给定?其实是在所有有穷正数内任意给定!“|cn|可以变得超越任何有限数(对随便什么M0,它都能变得比M大),…{cn}的极限是[2]超越任何有限数|cn|M所取各正数|cn|>任何有限数M显然是只能与分形几何中的相应闭折线的无穷长周长相对应的无穷大正数。故标准数学内暗含有“更无理”数x>M

y=2x+x-x=2x+0>0中的x→∞即x变至后来所取各正数x无穷大正数>任何有限数M③在无穷集KGH中减去全部元素就得只有0个元素的F=K-K,而只减去无穷集G的全部元素得非空且与G不交的H=GH-G至少一个元分形几何中的相应闭折线的无穷长周长3c-3c=0

①②③④说明“本身-本身=0”是不分“有穷”与“无穷”而皆成立的最起码常识。

然而是什么原因使课本及科普书上有常识性错误断定s-1=0(应=-1)。关键是如上所述,断定s-1中的1-1一样多,是直观上的错觉。症结是误以为s1+1=1+1+1+1+…=s1=1+1+1+…百年集论断定两级数的项一样多)、-s1=s2=s2-1从而推出极荒唐的:s1+1+s2=s1+s2=s=s+1=0

显然有h定理:各项≠0 w =1+2+3+… =0的必要条件是和式中的奇数j=13与偶数j+1一样多即各

j与各j+1一一对应结成数偶(jj+1),即Wh的;充分条件是:项j + j+1=0。显然若和式是h型的,

其必有一奇数项无右邻项与之配对。

参考文献

[1]黄小宁  50字纠正五千年重大错误:任何自然n<自然数n+1——续50字推翻五千年科学“常识”:无最大自然数[J]科技信息(学术版),200821):46

[2] 周伯壎  数列与极限[M],江苏人民出版社,1978.1227

[3]黄小宁 最伟大创造之一的康脱集论最让数学脱离健康,见:中华素质教育理论与实践新探(4[C],北京:中国戏剧出版社,2006.2423.

E-mailhxl268@163.comhxl中的l是英文字母)   电:

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值