给定 N 个正整数 A1,A2,…,ANA1,A2,…,AN,从中选出若干个数,使它们的和为 M,求有多少种选择方案。
输入格式
第一行包含两个整数 N和 M。
第二行包含 N 个整数,表示 A1,A2,…,ANA1,A2,…,AN。
输出格式
包含一个整数,表示可选方案数。
数据范围
1≤N≤1001≤N≤100,
1≤M≤100001≤M≤10000,
1≤Ai≤10001≤Ai≤1000,
答案保证在 int 范围内。
输入样例:
4 4
1 1 2 2
输出样例:
3
完整代码:
#include<iostream>
using namespace std;
const int N=10010;
int v[N];//用于记录体积
int f[N];//状态转移方程 f[j] += f[j - v] 表示:装满容量为 j 的背包的方案数等于不选择第 i 个物品时的方案数加上选择第 i 个物品时的方案数。
int n,m;
int main(){
cin>>n>>m;
for(int i=1;i<=n;i++)cin>>v[i];
f[0]=1;
for(int i=1;i<=n;i++)
for(int j=m;j>=v[i];j--)
f[j]+=f[j-v[i]];
cout<<f[m]<<endl;
return 0;
}
2025.2.10.1