机器学习时代三大神器GBDT、XGBoost、LightGBM
都属于集成学习Boosting算法
梯度提升决策树GDBT(MART)
GBDT属于Boosting算法
GBDT有时又被称为MART(Multiple Additive Regression Tree)
GBDT中使用的决策树通常为CART(分类与回归树)
举例来说, 假设我们要预测一个人的年龄,训练集只有A、B、C、D 4个人,他们的年龄分别是14、16、24、26,特征包括了“月购物金额”“上网时长”“上网历史”等。下面开始训练第一棵树,训练的过程跟传统决策树相同,简单起见,我们只进行一次分枝。训练好第一棵树后,求得每个样本预测值与真实值之间的残差。可以看到,A、B、C、D的残差分别是-1、1、-1、1。这时我们就用每个样本的残差训练下一棵树,直到残差收敛到某个阈值以下,或者树的总数达到某个上限为止。
由于GBDT是利用残差训练的,在预测的过程中,我们也需要把所有树的预测值加起来,得到最终的预测结果。
XGBoost
XGBoost是boosting算法的其中一种,采用的是贪心策略
XGBoost是陈天奇等人开发的一个开源机器学习项目,高效地实现了GBDT算法并进行了算法和工程上的许多改进,被广泛应用在Kaggle竞赛及其他许多机器学习竞赛中。
GBDT是机器学习算法,XGBoost是该算法的工程实现
原始的GBDT算法基于经验损失函数的负梯度来构造新的决策树,只是在决策树构建完成后再进行剪枝。而XGBoost在决策树构建阶段就加入了正则项来控制模型的复杂度,有利于防止过拟合,从而提高模型的泛化能力。
LightGBM
LightGBM是GBDT模型的进步版本,它和XGBoost一样是对GBDT的高效实现
LightGBM在很多方面会比XGBoost表现的更为优秀
机器学习时代三大神器GBDT(MART)、XGBoost、LightGBM
最新推荐文章于 2024-10-30 12:03:33 发布