KL散度(相对熵)(双向KL散度) & JS散度

KL散度

KL-divergence(Kullback–Leibler divergence),KL散度,KL距离,又叫相对熵(relative entropy),衡量两个概率分布之间的不同程度,是描述两个概率分布P和Q差异的一种方法

就是信息论学的相对熵

最简单的情况:当KL-divergence为0时,两个分布完全相同。

 

P和Q越相似,KL散度越小

KL散度的取值范围是[0,+∞]

KL divergence是非负的,不对称的

KL散度计算过程相对熵(KL散度)计算过程_手撕机的博客-CSDN博客_kl散度计算

双向KL散度

在R-Dropout中有出现,由于 KL 散度本身具有不对称性(即KL(P|Q)不等于KL(Q|P)),作者通过交换这两种分布的位置以间接使用整体对称的 KL 散度,论文中称之为双向 KL 散度

高斯分布的KL散度

JS散度

JS散度是基于KL散度的变体,解决了KL散度非对称的问题

同样是二者越相似,JS散度越小。

  • JS散度的取值范围在0-1之间,完全相同时为0
  • JS散度是对称的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值