朴素贝叶斯模型进行垃圾邮件分类

代码和数据: https://github.com/skyerhxx/Spam_Classification

 

 

数据集一共155封邮件,0-151用来训练,151-155用来测试

使用sklearn的MultinomialNB()库进行垃圾邮件分类

 

重点是使用模型建立起vector和label的对应关系

然后NLP中文本和向量的映射,的对应关系在这里体现的很直观的4

import re
import os
from jieba import cut
from itertools import chain
from collections import Counter
import numpy as np
from sklearn.naive_bayes import MultinomialNB


#文本预处理
def get_words(filename):
    """读取文本并过滤无效字符和长度为1的词"""
    words = []
    with open(filename, 'r', encoding='utf-8') as fr:
        for line in fr:
            line = line.strip()
            # 过滤无效字符
            line = re.sub(r'[.【】0-9、——。,!~\*]', '', line)
            # 使用jieba.cut()方法对文本切词处理
            line = cut(line)
            # 过滤长度为1的词
            line = filter(lambda word: len(word) > 1, line)
            words.extend(line)

    return words

#遍历邮件
all_words = []


def get_top_words(top_num):
    """遍历邮件建立词库后返回出现次数最多的词"""
    filename_list = ['email/{}.txt'.format(i) for i in range(151)]
    # 遍历邮件建立词库
    for filename in filename_list:
        all_words.append(get_words(filename))

    # itertools.chain()把all_words内的所有列表组合成一个列表
    # collections.Counter()统计词个数
    freq = Counter(chain(*all_words))

    return [i[0] for i in freq.most_common(top_num)]


top_words = get_top_words(100)

# 构建词-个数映射表
# 这就是对文本进行向量的映射
vector = []
for words in all_words:
    '''
    words:
    ['国际', 'SCI', '期刊', '材料', '结构力学', '工程', '杂志', '国际', 'SCI', '期刊', '先进', '材料科学', 
    '材料', '工程', '杂志', '国际', 'SCI', '期刊', '图像处理', '模式识别', '人工智能', '工程', '杂志', '国际', 
    'SCI', '期刊', '数据', '信息', '科学杂志', '国际', 'SCI', '期刊', '机器', '学习', '神经网络', '人工智能',
    '杂志', '国际', 'SCI', '期刊', '能源', '环境', '生态', '温度', '管理', '结合', '信息学', '杂志', '期刊',
    '网址', '论文', '篇幅', '控制', '以上', '英文', '字数', '以上', '文章', '撰写', '语言', '英语', '论文', 
    '研究', '内容', '详实', '方法', '正确', '理论性', '实践性', '科学性', '前沿性', '投稿', '初稿', '需要', 
    '排版', '录用', '提供', '模版', '排版', '写作', '要求', '正规', '期刊', '正规', '操作', '大牛', '出版社', 
    '期刊', '期刊', '质量', '放心', '检索', '稳定', '邀请函', '推荐', '身边', '老师', '朋友', '打扰', '请谅解']
    '''
    word_map = list(map(lambda word: words.count(word), top_words))
    '''
    word_map:
    [0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 
    10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 
    0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
    '''
    vector.append(word_map)

#训练模型
vector = np.array(vector)
# 0-126.txt为垃圾邮件标记为1;127-151.txt为普通邮件标记为0
labels = np.array([1]*127 + [0]*24)

model = MultinomialNB() #朴素贝叶斯模型
model.fit(vector, labels)

#测试模型
def predict(filename):
    """对未知邮件分类"""
    # 构建未知邮件的词向量
    words = get_words(filename)
    current_vector = np.array(
        tuple(map(lambda word: words.count(word), top_words)))

    # 预测结果
    result = model.predict(current_vector.reshape(1, -1))

    return '**垃圾邮件**' if result == 1 else '普通邮件'


print('151.txt分类情况:{}'.format(predict('email/151.txt')))
print('152.txt分类情况:{}'.format(predict('email/152.txt')))
print('153.txt分类情况:{}'.format(predict('email/153.txt')))
print('154.txt分类情况:{}'.format(predict('email/154.txt')))
print('155.txt分类情况:{}'.format(predict('email/155.txt')))

 

参考:

https://www.cnblogs.com/nickchen121/p/10825997.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值