Tensorflow与Flask结合打造手写体数字识别项目(MNIST数据集)

代码见:https://github.com/skyerhxx/Tensorflow-Flask

 

开发环境

  • Python:3.7
  • Tensorflow: 1.13.1
  • cuda 10.1
  • Flask: 1.1.2
  • IDE: Pycharm
  • OS:Win10

 

 

 

使用Flask调用模型步骤

①使用训练好的模型

②定义参数

③通过端进行传参

④进行数据验证并返回

 

整合步骤

①训练并生成模型

②暴露接口

③前端调用

④验证并返回结果

 

效果展示

 

线性模型训练

主程序是regression.py,线性回归模型在model.py中

 

运行regression.py

保存ckpt会出现

 

卷积模型训练

主程序是convolutional.py,卷积模型在model.py中

 

运行convolutional.py

 

当前目录结构

 

使用前端界面调用flask发布的ckpt模型

将模型的接口暴露给前端界面

新建main.py

 

编写好了之后,要调用还要编写前端界面

前端页面直接用现成的,这三个目录

index.html原始打开是这样

 

最终结果


 

 

数据是如何交互的

当前端得到index数据之后,首先会把数据传给main.js

main.js的ajax会和我们的main.py交互

会通过data传进来放到inputs里,inputs再进行一些转换,再放到data里来,再请求mnist接口,通过post方法,得到data数据,再做json解析,再放到网页中相应的位置显示

 

参考:

https://www.imooc.com/learn/994

https://github.com/byerHu/mnist_web

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值