代码见:https://github.com/skyerhxx/Tensorflow-Flask
开发环境
- Python:3.7
- Tensorflow: 1.13.1
- cuda 10.1
- Flask: 1.1.2
- IDE: Pycharm
- OS:Win10
使用Flask调用模型步骤
①使用训练好的模型
②定义参数
③通过端进行传参
④进行数据验证并返回
整合步骤
①训练并生成模型
②暴露接口
③前端调用
④验证并返回结果
效果展示
线性模型训练
主程序是regression.py,线性回归模型在model.py中
运行regression.py
保存ckpt会出现
卷积模型训练
主程序是convolutional.py,卷积模型在model.py中
运行convolutional.py
当前目录结构
使用前端界面调用flask发布的ckpt模型
将模型的接口暴露给前端界面
新建main.py
编写好了之后,要调用还要编写前端界面
前端页面直接用现成的,这三个目录
index.html原始打开是这样
最终结果
数据是如何交互的
当前端得到index数据之后,首先会把数据传给main.js
main.js的ajax会和我们的main.py交互
会通过data传进来放到inputs里,inputs再进行一些转换,再放到data里来,再请求mnist接口,通过post方法,得到data数据,再做json解析,再放到网页中相应的位置显示
参考: