以下是针对32*32像素图像进行PGD图像对抗攻击的代码示例,包括输入输出和存储:
```python
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
# 定义网络模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(torch.relu(self.conv1(x)))
x = self.pool(torch.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
# 加载CIFAR-10数据集
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
# 定义PGD攻击函数
def pgd_attack(model, images, labels, eps=0.3, alpha=0.01, iters=40):
images = images.to(device)
labels = labels.to(device)
adv_images = images.detach()
adv_images.requires_grad = True
for i in range(iters):
outputs = model(adv_images)
loss = nn.CrossEntropyLoss()(outputs, labels)
loss.backward()
adv_images_grad = adv_images.grad.data
sign_data_grad = adv_images_grad.sign()
perturbed_image = adv_images + alpha*sign_data_grad
eta = torch.clamp(perturbed_image - images, min=-eps, max=eps)
adv_images = torch.clamp(images + eta, min=-1, max=1).detach_()
adv_images.requires_grad = True
return adv_images.detach()
# 训练模型
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
net = Net()
net.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
for epoch in range(2):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 2000 == 1999:
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
# 对测试集进行PGD攻击
dataiter = iter(testloader)
images, labels = dataiter.next()
adv_images = pgd_attack(net, images, labels)
# 显示原始图像和对抗图像
img = torchvision.utils.make_grid(images)
adv_img = torchvision.utils.make_grid(adv_images)
img = img / 2 + 0.5 # unnormalize
adv_img = adv_img / 2 + 0.5 # unnormalize
plt.imshow(np.transpose(img.numpy(), (1, 2, 0)))
plt.show()
plt.imshow(np.transpose(adv_img.numpy(), (1, 2, 0)))
plt.show()
# 保存对抗图像
adv_img = adv_images.mul(0.5).add(0.5)
torchvision.utils.save_image(adv_img, 'adv_images.png')
```
在这段代码中,我们首先定义了一个卷积神经网络模型,该模型用于对CIFAR-10数据集进行分类。我们利用PyTorch中的transforms模块将图像转换为张量,并进行归一化处理。然后,我们定义了一个PGD攻击函数,该函数输入模型、原始图像、标签以及攻击参数eps、alpha和iters,输出对抗样本。接下来,我们使用CIFAR-10数据集训练了我们的模型,并对测试集进行了PGD攻击。最后,我们将原始图像和对抗图像可视化,并将对抗图像保存在本地。