torchvision.utils.make_grid 将一个batch的图片在一张图中显示 (torchvision.utils.save_image)

import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import torchvision

img = plt.imread('wave.jpg')
img_tensor = transforms.ToTensor()(img)
img_tensor = img_tensor.repeat(10,1,1,1)
img_tensor = torchvision.utils.make_grid(img_tensor)
torchvision.utils.save_image(img_tensor,'out.jpg')

可以用nrow参数,设置每行几张图片

import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import torchvision

img = plt.imread('wave.jpg')
img_tensor = transforms.ToTensor()(img)
img_tensor = img_tensor.repeat(10,1,1,1)
img_tensor = torchvision.utils.make_grid(img_tensor, nrow=4)
torchvision.utils.save_image(img_tensor,'out.jpg')

padding设置图片边距

import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import torchvision

img = plt.imread('wave.jpg')
img_tensor = transforms.ToTensor()(img)
img_tensor = img_tensor.repeat(10,1,1,1)
img_tensor = torchvision.utils.make_grid(img_tensor, nrow=4, padding=100)
torchvision.utils.save_image(img_tensor,'out.jpg')

 

但是这里其实有点多余,即如果使用torchvision.utils.save_image是没有必要写torch.utils.make_grid的,torchvision.utils.save_image内部会进行make_grid操作

import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import torchvision

img = plt.imread('wave.jpg')
img_tensor = transforms.ToTensor()(img)
img_tensor = img_tensor.repeat(10,1,1,1)
torchvision.utils.save_image(img_tensor,'out.jpg')

 

以下是针对32*32像素像进行PGD像对抗攻击的代码示例,包括输入输出和存储: ```python import torch import torch.nn as nn import torchvision import torchvision.transforms as transforms import torch.optim as optim import numpy as np import matplotlib.pyplot as plt # 定义网络模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(torch.relu(self.conv1(x))) x = self.pool(torch.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = self.fc3(x) return x # 加载CIFAR-10数据集 transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=False, num_workers=2) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') # 定义PGD攻击函数 def pgd_attack(model, images, labels, eps=0.3, alpha=0.01, iters=40): images = images.to(device) labels = labels.to(device) adv_images = images.detach() adv_images.requires_grad = True for i in range(iters): outputs = model(adv_images) loss = nn.CrossEntropyLoss()(outputs, labels) loss.backward() adv_images_grad = adv_images.grad.data sign_data_grad = adv_images_grad.sign() perturbed_image = adv_images + alpha*sign_data_grad eta = torch.clamp(perturbed_image - images, min=-eps, max=eps) adv_images = torch.clamp(images + eta, min=-1, max=1).detach_() adv_images.requires_grad = True return adv_images.detach() # 训练模型 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print(device) net = Net() net.to(device) criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) for epoch in range(2): running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data inputs, labels = inputs.to(device), labels.to(device) optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 2000 == 1999: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000)) running_loss = 0.0 print('Finished Training') # 对测试集进行PGD攻击 dataiter = iter(testloader) images, labels = dataiter.next() adv_images = pgd_attack(net, images, labels) # 显示原始像和对抗像 img = torchvision.utils.make_grid(images) adv_img = torchvision.utils.make_grid(adv_images) img = img / 2 + 0.5 # unnormalize adv_img = adv_img / 2 + 0.5 # unnormalize plt.imshow(np.transpose(img.numpy(), (1, 2, 0))) plt.show() plt.imshow(np.transpose(adv_img.numpy(), (1, 2, 0))) plt.show() # 保存对抗像 adv_img = adv_images.mul(0.5).add(0.5) torchvision.utils.save_image(adv_img, 'adv_images.png') ``` 在这段代码中,我们首先定义了一个卷积神经网络模型,该模型用于对CIFAR-10数据集进行分类。我们利用PyTorch中的transforms模块将像转换为张量,并进行归一化处理。然后,我们定义了一个PGD攻击函数,该函数输入模型、原始像、标签以及攻击参数eps、alpha和iters,输出对抗样本。接下来,我们使用CIFAR-10数据集训练了我们的模型,并对测试集进行了PGD攻击。最后,我们将原始像和对抗像可视化,并将对抗像保存在本地。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值