题目大意:有n棵树,m种颜料,要求现在要给这些树涂上颜料,最后涂成k段(连续颜色相同划为一段如2, 1, 1, 1, 3, 2, 2, 3, 1, 3是7段),有些树已经涂了,则不涂了只能涂一次,输入n个数(每个数为0~m),0表示还没有涂,1~m表示已经涂了哪种颜料。接下来输入n行m列,表示每棵树涂成每种颜色所要的颜料量。现在要把所有树都涂上颜料涂成k段,求最少要用的颜料量;
题解:看到100的范围,就大胆设3维dp。
dp[i][j][k]表示前i个数划分为j组并且第i个数染上第k种颜色的最少的颜料值
具体见代码注释,最后复杂度是
#include<bits/stdc++.h>
#include<algorithm>
#include<cstring>
using namespace std;
#define ll long long
int c[110];
ll p[110][110];
ll dp[110][110][110];
#define INF 1000000000000000000//long long 类型的极大值
int main()
{
int n,m,k;
cin>>n>>m>>k;
for(int i=1;i<=n;++i)
cin>>c[i];
for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j)
cin>>p[i][j];
for(int i=0;i<=n;++i)//赋最大值
for(int j=0;j<=k;++j)
for(int h=0;h<=m;++h)
dp[i][j][h]=INF;
//初始化
if(c[1]==0)
{
for(int i=1;i<=m;++i)
dp[1][1][i]=p[1][i];
}
else dp[1][1][c[1]]=0;
for(int i=2;i<=n;++i)
{
for(int j=1;j<=k;++j)
{
if(c[i]==0)
{
for(int h=1;h<=m;++h)
{
//第i-1个和第i个都染得是一个颜色h色
dp[i][j][h]=min(dp[i][j][h],dp[i-1][j][h]+p[i][h]);
//第i-1个染的颜色和第i个颜色不同
for(int color=1;color<=m;++color)
if(color!=h)
dp[i][j][h]=min(dp[i][j][h],dp[i-1][j-1][color]+p[i][h]);
}
}
else//已经被染色了
{
//第i-1个和第i个都染得是一个颜色h色
dp[i][j][c[i]]=min(dp[i][j][c[i]],dp[i-1][j][c[i]]);
//第i-1个染的颜色和第i个颜色不同
for(int color=1;color<=m;++color)
if(color!=c[i])
dp[i][j][c[i]]=min(dp[i][j][c[i]],dp[i-1][j-1][color]);
}
}
}
ll ans=INF;
for(int i=1;i<=m;++i)
ans=min(ans,dp[n][k][i]);
if(ans==INF)
puts("-1");
else
cout<<ans<<endl;
return 0;
}