nb_200728_crowd_2019_access_A Crowd Behavior Identification Method

本文介绍了一种结合脉线和高精度变分光流模型的群体行为识别方法。首先,利用光流模型计算脉线,获取群体运动轨迹;然后,通过对轨迹始末之间的区域密度图进行计算和聚类,得到角度直方图和场景ROI;最后,结合区域密度图和角度直方图信息,识别场景ROI中的群体行为类型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A Crowd Behavior Identification Method Combining the Streakline With the High-Accurate Variational Optical Flow Model

一种结合基于流体力学的脉线和高精度变分光流模型的群体行为识别方法

1. Abstract

– STEPS:
  • 1.1 通过光流模型 (High-Accurate Variational Optical
    Flow Model)
    计算脉线 (streakline),由此得到群体运动轨迹。
  • 1.2 通过对轨迹始末之间的区域密度图 (dasymetric dot map) 进行计算和聚类,可以得到角度直方图 (angular histogram) 和场景ROI (regions of interest )
  • 1.3 结合区域密度图和角度直方图信息,识别场景ROI中的群体行为类型。

…待续

百度百科

脉线(streakline) 是在某一时间间隔内相继经过空间一固定点的流体质点依次串连起来而成的曲线。在观察流场流动时,可以从流场的某一特定点不断向流体内输入颜色液体(或烟雾),这些液体(或烟雾)质点在流场中构成的曲线即为脉线。对定常流场,脉线 就是迹线,同时也就是流线。但在不定常流中脉线与流线不重合,不能将它误认为流线。脉线与迹线密切相关,可通过迹线方程导出脉线方程。

内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值