机器学习中的数学——常用概率分布(一):伯努利分布(Bernoulli分布)

这篇博客详细介绍了机器学习中常用的概率分布,包括伯努利分布、范畴分布、二项分布、均匀分布、高斯分布、指数分布、拉普拉斯分布、狄拉克分布、经验分布、贝塔分布、狄利克雷分布和逻辑斯谛分布。这些分布在统计建模和概率论中扮演着重要角色,是理解机器学习算法基础的必备知识。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分类目录:《机器学习中的数学》总目录
相关文章:
· 常用概率分布(一):伯努利分布(Bernoulli分布)
· 常用概率分布(二):范畴分布(Multinoulli分布)
· 常用概率分布(三):二项分布(Binomial分布)
· 常用概率分布(四):均匀分布(Uniform分布)
· 常用概率分布(五):高斯分布(Gaussian分布)/正态分布(Normal分布)
· 常用概率分布(六):指数分布(Exponential分布)
· 常用概率分布(七): 拉普拉斯分布(Laplace分布)
· 常用概率分布(八):狄拉克分布(Dirac分布)
· 常用概率分布(九):经验分布(Empirical分布)
· 常用概率分布(十):贝塔分布(Beta分布)
· 常用概率分布(十一):狄利克雷分布(Dirichlet分布)
· 常用概率分布(十二):逻辑斯谛分布(Logistic 分布)


伯努利分布(Bernoulli分布)是单个二值随机变量的分布。它由单个参数 ϕ ∈ [ 0 , 1 ] \phi\in[0, 1] ϕ[0,1]控制, ϕ \phi ϕ给出了随机变量等于 1 的概率。它具有如下的一些性质:

  • 试验成功的概率为 ϕ \phi ϕ P ( x = 1 ) = ϕ P(x=1)=\phi P(x=1)=ϕ
  • 试验失败的概率为 1 − ϕ 1-\phi 1ϕ P ( x = 0 ) = 1 − ϕ P(x=0)=1 - \phi P(x=0)=1ϕ
  • 试验的期望为 ϕ \phi ϕ E [ x ] = ϕ E[x]=\phi E[x]=ϕ
  • 试验的方差为 ϕ ( 1 − ϕ ) \phi(1-\phi) ϕ(1ϕ) V a r ( x ) = ϕ ( 1 − ϕ ) Var(x)=\phi(1-\phi) Var(x)=ϕ(1ϕ)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

von Neumann

您的赞赏是我创作最大的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值