深入浅出TensorFlow2函数——tf.math.exp

分类目录:《深入浅出TensorFlow2函数》总目录
相关文章:
· 深入浅出TensorFlow2函数——tf.exp
· 深入浅出TensorFlow2函数——tf.math.exp
· 深入浅出Pytorch函数——torch.exp
· 深入浅出PaddlePaddle函数——paddle.exp


按元素计算 x x x的指数 y = e x y=e^x y=ex

语法
tf.math.exp(
    x, name=None
)
参数
  • x:[tf.Tensor] 必须是以下类型之一:bfloat16halffloat32float64complex64complex128
  • name:[可选] 操作的名称。
返回值

一个与x类型相同的tf.Tensor

实例

输入:

x = tf.constant([2.0, 8.0])
tf.math.exp(x)

输出:

<tf.Tensor: shape=(2,), dtype=float32, numpy=array([   7.389056, 2980.958   ], dtype=float32)>
函数实现
@tf_export("math.exp", "exp")
@dispatch.register_unary_elementwise_api
@dispatch.add_dispatch_support
def exp(x, name=None):
  r"""Computes exponential of x element-wise.  \\(y = e^x\\).
  This function computes the exponential of the input tensor element-wise.
  i.e. `math.exp(x)` or \\(e^x\\), where `x` is the input tensor.
  \\(e\\) denotes Euler's number and is approximately equal to 2.718281.
  Output is positive for any real input.
  >>> x = tf.constant(2.0)
  >>> tf.math.exp(x)
  <tf.Tensor: shape=(), dtype=float32, numpy=7.389056>
  >>> x = tf.constant([2.0, 8.0])
  >>> tf.math.exp(x)
  <tf.Tensor: shape=(2,), dtype=float32,
  numpy=array([   7.389056, 2980.958   ], dtype=float32)>
  For complex numbers, the exponential value is calculated as
  $$
  e^{x+iy} = {e^x} {e^{iy}} = {e^x} ({\cos (y) + i \sin (y)})
  $$
  For `1+1j` the value would be computed as:
  $$
  e^1 (\cos (1) + i \sin (1)) = 2.7182817 \times (0.5403023+0.84147096j)
  $$
  >>> x = tf.constant(1 + 1j)
  >>> tf.math.exp(x)
  <tf.Tensor: shape=(), dtype=complex128,
  numpy=(1.4686939399158851+2.2873552871788423j)>
  Args:
    x: A `tf.Tensor`. Must be one of the following types: `bfloat16`, `half`,
      `float32`, `float64`, `complex64`, `complex128`.
    name: A name for the operation (optional).
  Returns:
    A `tf.Tensor`. Has the same type as `x`.
  @compatibility(numpy)
  Equivalent to np.exp
  @end_compatibility
  """
  return gen_math_ops.exp(x, name)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

von Neumann

您的赞赏是我创作最大的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值