大模型从入门到应用——LangChain:代理(Agents)-[工具(Tools):人工确认工具验证和Tools作为OpenAI函数]

本文详细介绍了LangChain框架中的各种基础概念和技术,包括安装配置、代理、记忆管理、聊天模型、LLM接口、人工确认工具、以及如何使用LangChain工具作为OpenAI函数。重点讲解了如何配置和安全使用ShellTool进行人工确认和自定义工具集成。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分类目录:《大模型从入门到应用》总目录

LangChain系列文章:


人工确认工具验证

本节演示如何为任何工具添加人工确认验证,我们将使用HumanApprovalCallbackhandler完成此操作。假设我们需要使用ShellTool,将此工具添加到自动化流程中会带来明显的风险。我们将看看如何强制对输入到该工具的内容进行手动人工确认。我们通常建议不要使用ShellTool。它有很多被误用的方式,并且在大多数情况下并不需要使用它。我们这里只是为了演示目的才使用它。

from langchain.callbacks import HumanApprovalCallbackHandler
from langchain.tools import ShellTool
tool = ShellTool()
print(tool.run('echo Hello World!'))

输出:

Hello World!
添加人工确认

将默认的HumanApprovalCallbackHandler添加到工具中,这样在实际执行命令之前,用户必须手动批准工具的每个输入。

tool = ShellTool(callbacks=[HumanApprovalCallbackHandler()])
print(tool.run("ls /usr"))

日志输出与输入:

Do you approve of the following input? Anything except 'Y'/'Yes' (case-insensitive) will be treated as a no.

ls /usr
yes
X11
X11R6
bin
lib
libexec
local
sbin
share
standalone

输入:

print(tool.run("ls /private"))

日志输出与输入:

Do you approve of the following input? Anything except 'Y'/'Yes' (case-insensitive) will be treated as a no.

ls /private
no



---------------------------------------------------------------------------

HumanRejectedException                    Traceback (most recent call last)

Cell In[17], line 1
----> 1 print(tool.run("ls /private"))


File ~/langchain/langchain/tools/base.py:257, in BaseTool.run(self, tool_input, verbose, start_color, color, callbacks, **kwargs)
    255 # TODO: maybe also pass through run_manager is _run supports kwargs
    256 new_arg_supported = signature(self._run).parameters.get("run_manager")
--> 257 run_manager = callback_manager.on_tool_start(
    258     {"name": self.name, "description": self.description},
    259     tool_input if isinstance(tool_input, str) else str(tool_input),
    260     color=start_color,
    261     **kwargs,
    262 )
    263 try:
    264     tool_args, tool_kwargs = self._to_args_and_kwargs(parsed_input)


File ~/langchain/langchain/callbacks/manager.py:672, in CallbackManager.on_tool_start(self, serialized, input_str, run_id, parent_run_id, **kwargs)
    669 if run_id is None:
    670     run_id = uuid4()
--> 672 _handle_event(
    673     self.handlers,
    674     "on_tool_start",
    675     "ignore_agent",
    676     serialized,
    677     input_str,
    678     run_id=run_id,
    679     parent_run_id=self.parent_run_id,
    680     **kwargs,
    681 )
    683 return CallbackManagerForToolRun(
    684     run_id, self.handlers, self.inheritable_handlers, self.parent_run_id
    685 )


File ~/langchain/langchain/callbacks/manager.py:157, in _handle_event(handlers, event_name, ignore_condition_name, *args, **kwargs)
    155 except Exception as e:
    156     if handler.raise_error:
--> 157         raise e
    158     logging.warning(f"Error in {event_name} callback: {e}")


File ~/langchain/langchain/callbacks/manager.py:139, in _handle_event(handlers, event_name, ignore_condition_name, *args, **kwargs)
    135 try:
    136     if ignore_condition_name is None or not getattr(
    137         handler, ignore_condition_name
    138     ):
--> 139         getattr(handler, event_name)(*args, **kwargs)
    140 except NotImplementedError as e:
    141     if event_name == "on_chat_model_start":


File ~/langchain/langchain/callbacks/human.py:48, in HumanApprovalCallbackHandler.on_tool_start(self, serialized, input_str, run_id, parent_run_id, **kwargs)
     38 def on_tool_start(
     39     self,
     40     serialized: Dict[str, Any],
   (...)
     45     **kwargs: Any,
     46 ) -> Any:
     47     if self._should_check(serialized) and not self._approve(input_str):
---> 48         raise HumanRejectedException(
     49             f"Inputs {input_str} to tool {serialized} were rejected."
     50         )


HumanRejectedException: Inputs ls /private to tool {'name': 'terminal', 'description': 'Run shell commands on this MacOS machine.'} were rejected.
配置人工确认

假设我们有一个代理程序,接收多个工具,并且我们只希望在某些工具和某些输入上触发人工确认请求。我们可以配置回调处理程序来实现这一点。

from langchain.agents import load_tools
from langchain.agents import initialize_agent
from langchain.agents import AgentType
from langchain.llms import OpenAI
def _should_check(serialized_obj: dict) -> bool:
    # Only require approval on ShellTool.
    return serialized_obj.get("name") == "terminal"

def _approve(_input: str) -> bool:
    if _input == "echo 'Hello World'":
        return True
    msg = (
        "Do you approve of the following input? "
        "Anything except 'Y'/'Yes' (case-insensitive) will be treated as a no."
    )
    msg += "\n\n" + _input + "\n"
    resp = input(msg)
    return resp.lower() in ("yes", "y")

callbacks = [HumanApprovalCallbackHandler(should_check=_should_check, approve=_approve)]
llm = OpenAI(temperature=0)
tools = load_tools(["wikipedia", "llm-math", "terminal"], llm=llm)
agent = initialize_agent(
    tools, 
    llm, 
    agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, 
)
agent.run("It's 2023 now. How many years ago did Konrad Adenauer become Chancellor of Germany.", callbacks=callbacks)

输出:

'Konrad Adenauer became Chancellor of Germany in 1949, 74 years ago.'

输入:

agent.run("print 'Hello World' in the terminal", callbacks=callbacks)

输出:

'Hello World'

输入:

agent.run("list all directories in /private", callbacks=callbacks)

日志输出与输入:


ls /private
no



---------------------------------------------------------------------------

HumanRejectedException                    Traceback (most recent call last)

Cell In[39], line 1
----> 1 agent.run("list all directories in /private", callbacks=callbacks)


File ~/langchain/langchain/chains/base.py:236, in Chain.run(self, callbacks, *args, **kwargs)
    234     if len(args) != 1:
    235         raise ValueError("`run` supports only one positional argument.")
--> 236     return self(args[0], callbacks=callbacks)[self.output_keys[0]]
    238 if kwargs and not args:
    239     return self(kwargs, callbacks=callbacks)[self.output_keys[0]]


File ~/langchain/langchain/chains/base.py:140, in Chain.__call__(self, inputs, return_only_outputs, callbacks)
    138 except (KeyboardInterrupt, Exception) as e:
    139     run_manager.on_chain_error(e)
--> 140     raise e
    141 run_manager.on_chain_end(outputs)
    142 return self.prep_outputs(inputs, outputs, return_only_outputs)


File ~/langchain/langchain/chains/base.py:134, in Chain.__call__(self, inputs, return_only_outputs, callbacks)
    128 run_manager = callback_manager.on_chain_start(
    129     {"name": self.__class__.__name__},
    130     inputs,
    131 )
    132 try:
    133     outputs = (
--> 134         self._call(inputs, run_manager=run_manager)
    135         if new_arg_supported
    136         else self._call(inputs)
    137     )
    138 except (KeyboardInterrupt, Exception) as e:
    139     run_manager.on_chain_error(e)


File ~/langchain/langchain/agents/agent.py:953, in AgentExecutor._call(self, inputs, run_manager)
    951 # We now enter the agent loop (until it returns something).
    952 while self._should_continue(iterations, time_elapsed):
--> 953     next_step_output = self._take_next_step(
    954         name_to_tool_map,
    955         color_mapping,
    956         inputs,
    957         intermediate_steps,
    958         run_manager=run_manager,
    959     )
    960     if isinstance(next_step_output, AgentFinish):
    961         return self._return(
    962             next_step_output, intermediate_steps, run_manager=run_manager
    963         )


File ~/langchain/langchain/agents/agent.py:820, in AgentExecutor._take_next_step(self, name_to_tool_map, color_mapping, inputs, intermediate_steps, run_manager)
    818         tool_run_kwargs["llm_prefix"] = ""
    819     # We then call the tool on the tool input to get an observation
--> 820     observation = tool.run(
    821         agent_action.tool_input,
    822         verbose=self.verbose,
    823         color=color,
    824         callbacks=run_manager.get_child() if run_manager else None,
    825         **tool_run_kwargs,
    826     )
    827 else:
    828     tool_run_kwargs = self.agent.tool_run_logging_kwargs()


File ~/langchain/langchain/tools/base.py:257, in BaseTool.run(self, tool_input, verbose, start_color, color, callbacks, **kwargs)
    255 # TODO: maybe also pass through run_manager is _run supports kwargs
    256 new_arg_supported = signature(self._run).parameters.get("run_manager")
--> 257 run_manager = callback_manager.on_tool_start(
    258     {"name": self.name, "description": self.description},
    259     tool_input if isinstance(tool_input, str) else str(tool_input),
    260     color=start_color,
    261     **kwargs,
    262 )
    263 try:
    264     tool_args, tool_kwargs = self._to_args_and_kwargs(parsed_input)


File ~/langchain/langchain/callbacks/manager.py:672, in CallbackManager.on_tool_start(self, serialized, input_str, run_id, parent_run_id, **kwargs)
    669 if run_id is None:
    670     run_id = uuid4()
--> 672 _handle_event(
    673     self.handlers,
    674     "on_tool_start",
    675     "ignore_agent",
    676     serialized,
    677     input_str,
    678     run_id=run_id,
    679     parent_run_id=self.parent_run_id,
    680     **kwargs,
    681 )
    683 return CallbackManagerForToolRun(
    684     run_id, self.handlers, self.inheritable_handlers, self.parent_run_id
    685 )


File ~/langchain/langchain/callbacks/manager.py:157, in _handle_event(handlers, event_name, ignore_condition_name, *args, **kwargs)
    155 except Exception as e:
    156     if handler.raise_error:
--> 157         raise e
    158     logging.warning(f"Error in {event_name} callback: {e}")


File ~/langchain/langchain/callbacks/manager.py:139, in _handle_event(handlers, event_name, ignore_condition_name, *args, **kwargs)
    135 try:
    136     if ignore_condition_name is None or not getattr(
    137         handler, ignore_condition_name
    138     ):
--> 139         getattr(handler, event_name)(*args, **kwargs)
    140 except NotImplementedError as e:
    141     if event_name == "on_chat_model_start":


File ~/langchain/langchain/callbacks/human.py:48, in HumanApprovalCallbackHandler.on_tool_start(self, serialized, input_str, run_id, parent_run_id, **kwargs)
     38 def on_tool_start(
     39     self,
     40     serialized: Dict[str, Any],
   (...)
     45     **kwargs: Any,
     46 ) -> Any:
     47     if self._should_check(serialized) and not self._approve(input_str):
---> 48         raise HumanRejectedException(
     49             f"Inputs {input_str} to tool {serialized} were rejected."
     50         )


HumanRejectedException: Inputs ls /private to tool {'name': 'terminal', 'description': 'Run shell commands on this MacOS machine.'} were rejected.

Tools作为OpenAI函数

这个笔记本将介绍如何将LangChain的工具作为OpenAI函数使用。

from langchain.chat_models import ChatOpenAI
from langchain.schema import HumanMessage
model = ChatOpenAI(model="gpt-3.5-turbo-0613")
from langchain.tools import MoveFileTool, format_tool_to_openai_function
tools = [MoveFileTool()]
functions = [format_tool_to_openai_function(t) for t in tools]
message = model.predict_messages([HumanMessage(content='move file foo to bar')], functions=functions)
message

输出:

AIMessage(content='', additional_kwargs={'function_call': {'name': 'move_file', 'arguments': '{\n  "source_path": "foo",\n  "destination_path": "bar"\n}'}}, example=False)

输入:

message.additional_kwargs['function_call']

输出:

{'name': 'move_file',
 'arguments': '{\n  "source_path": "foo",\n  "destination_path": "bar"\n}'}

参考文献:
[1] LangChain官方网站:https://www.langchain.com/
[2] LangChain 🦜️🔗 中文网,跟着LangChain一起学LLM/GPT开发:https://www.langchain.com.cn/
[3] LangChain中文网 - LangChain 是一个用于开发由语言模型驱动的应用程序的框架:http://www.cnlangchain.com/

### 关于 `langchain.agents.tools` 模块 #### 工具Tools工具是在 LangChain 中由代理使用的功能组件,这些组件允许代理执行特定的任务。通过集成不同的工具代理能够完成更加复杂的操作。例如,代理可以通过调用搜索引擎获取最新信息、利用数据库检索数据或是借助代码执行器运行脚本。 为了创建自定义工具,在 Python 中通常会继承 `BaseTool` 类,并实现必要的方法以适应具体需求[^3]。 #### 自定义工具 (Custom Tools) 存在两种主要的方式来自定义工具: 1. **字符串输入输出工具** 这类工具接收字符串作为参数并返回处理后的字符串结果。对于简单的任务来说非常方便实用。下面展示了一个基本的例子,说明如何构建一个基于函数装饰器的简单工具: ```python from langchain.tools import tool @tool def greet(name: str) -> str: """Return a greeting message.""" return f"Hello {name}" ``` 2. **结构化工具 (Structured Tools)** 当需要传递复杂的数据结构给工具时,则应考虑使用结构化的工具形式。这使得开发者可以在不改变接口的情况下灵活调整内部逻辑。这里给出一段示范代码片段,展示了怎样定义带有 JSON Schema 的高级工具: ```python import jsonschema from typing import Any, Dict from pydantic import BaseModel from langchain.tools import StructuredTool class CalculatorInput(BaseModel): operation: str operands: list[float] class CalculatorOutput(BaseModel): result: float class CalculatorTool(StructuredTool): name = "calculator" description = ( "A simple calculator that supports basic arithmetic operations." ) input_schema = CalculatorInput.schema() output_schema = CalculatorOutput.schema() def _run(self, inputs: Dict[str, Any]) -> dict: try: parsed_input = CalculatorInput(**inputs) match parsed_input.operation.lower(): case "+": res = sum(parsed_input.operands) case "-": res = parsed_input.operands[0] - sum(parsed_input.operands[1:]) case "*": res = 1 for num in parsed_input.operands: res *= num case "/": res = parsed_input.operands[0] for divisor in parsed_input.operands[1:]: if divisor != 0: res /= divisor else: raise ValueError("Division by zero is not allowed.") response = {"result": res} except Exception as e: error_msg = str(e) response = {"error": error_msg} finally: validated_output = CalculatorOutput.parse_obj(response).dict() return validated_output ``` 上述例子中,`CalculatorTool` 是一个支持四则运算的计算器工具,它接受包含操作符 (`operation`) 操作数列表 (`operands`) 的字典对象作为输入,并按照指定的操作计算最终的结果。此外还实现了异常捕获机制来确保程序的安全性稳定性[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

von Neumann

您的赞赏是我创作最大的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值