最大连续子序列和

最大连续子列和问题

给定一个数字序列A1,A2,……An,求i,j(1<=i<=j<=n),使得Ai+….Aj最大,输出这个最大和。

方法一:暴力枚举

枚举左端点和右端点(即枚举i和j),需要O(n^2)的复杂度,求和有需要O(n)的复杂度,因此总复杂度为O(n^3)

方法二:预处理记录前缀和

记S[i] = A[0]+A[1]….+A[i],这样A[i]+…+A[j] = S[j]-S[i-1];该计算的复杂度为O(1),但总的时间复杂度为O(n^2)

方法三:动态规划

动态规划问题的核心与难点其实就在于确定状态和状态转移方程,以及边界分析。
步骤一:确定状态
令状态dp[i]表示以A[i]作为末尾的连续序列的最大和,
因此所求最大和便是dp[0],dp[1],dp[2]…dp[n-1]中的最大值。
步骤二:确定状态转移方程,求dp数组
以A[i]结尾的连续序列只有两种情况
1. 这个最大和的连续序列只有一个元素,即以A[i]开始,以A[i]结尾
2. 这个最大和的连续序列有多个元素,即以A[p]开始,A[i]结尾
第一种情况,最大和就是A[i]
第二种情况,最大和是dp[i-1]+A[i]
所以可以得到状态转移方程
dp[i] = max{A[i],dp[i-1]+A[i]}
边界为dp[0] = A[0]
时间复杂度为O(n)

#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn = 10010;
int a[maxn],dp[maxn];
int main()
{
    int n;
    scanf("%d",&n);
    for(int i=0;i<n;i++){
        scanf("%d",&a[i]);
    }
    dp[0] = a[0];
    for(int i=1;i<n;i++){
        dp[i] = max(a[i],dp[i-1]+a[i]);
    }
    int k = 0;
    for(int i=1;i<n;i++){
        if(dp[i]>dp[k]){
            k = i;
        }
    }
    printf("%d\n",dp[k]);
    return 0;
}

状态的无后效性

状态的无后效性是指:当前状态记录了信息,一旦当前状态确定,就不会再改变,且未来的决策只能在已有的一个或若干个状态的
基础上进行,历史信息只能通过已有的状态去影响未来的决策。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值