在一条环路上有 N 个加油站,其中第 i 个加油站有汽油 gas[i] 升。你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i+1 个加油站需要消耗汽油 cost[i] 升。你从其中的一个加油站出发,开始时油箱为空。
如果你可以绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1。
说明:
如果题目有解,该答案即为唯一答案。
输入数组均为非空数组,且长度相同。
输入数组中的元素均为非负数。
示例 1:
输入:
gas = [1,2,3,4,5]
cost = [3,4,5,1,2]
输出: 3
解释:
从 3 号加油站(索引为 3 处)出发,可获得 4 升汽油。此时油箱有 = 0 + 4 = 4 升汽油
开往 4 号加油站,此时油箱有 4 - 1 + 5 = 8 升汽油
开往 0 号加油站,此时油箱有 8 - 2 + 1 = 7 升汽油
开往 1 号加油站,此时油箱有 7 - 3 + 2 = 6 升汽油
开往 2 号加油站,此时油箱有 6 - 4 + 3 = 5 升汽油
开往 3 号加油站,你需要消耗 5 升汽油,正好足够你返回到 3 号加油站。
因此,3 可为起始索引。
示例 2:
输入:
gas = [2,3,4]
cost = [3,4,3]
输出: -1
解释:
你不能从 0 号或 1 号加油站出发,因为没有足够的汽油可以让你行驶到下一个加油站。
我们从 2 号加油站出发,可以获得 4 升汽油。 此时油箱有 = 0 + 4 = 4 升汽油
开往 0 号加油站,此时油箱有 4 - 3 + 2 = 3 升汽油
开往 1 号加油站,此时油箱有 3 - 3 + 3 = 3 升汽油
你无法返回 2 号加油站,因为返程需要消耗 4 升汽油,但是你的油箱只有 3 升汽油。
因此,无论怎样,你都不可能绕环路行驶一周。
方法1:暴力法
尝试从每一个起点开始,并判断能否环路行驶,找出唯一的答案
时间复杂度:O(n^2)空间复杂度:O(1)
class Solution {
public:
int canCompleteCircuit(vector<int>& gas, vector<int>& cost)
{
int ans=-1;
int l=gas.size();
for(int i=0;i<l;i++)
{
int qty=0;
if(qty+gas[i]<cost[i])
continue;
else
{
qty+=gas[i]-cost[i];
for(int j=1;j<=l;j++)
{
if(qty+gas[(i+j)%l]>=cost[(i+j)%l])
qty+=gas[(i+j)%l]-cost[(i+j)%l];
else
break;
if((j+i)%l==i){
ans=i;
break;
}
}
}
}
return ans;
}
};
方法2:贪心算法
维护变量pos,qty和nowq,qty用来判断总油量是否超过总耗油量,nowq判断从当前位置开始能否到达下一个加油站,pos记录开始的加油站
时间复杂度:O(n)空间复杂度:O(1)
class Solution {
public:
int canCompleteCircuit(vector<int>& gas, vector<int>& cost)
{
int pos=0;//开始位置
int qty=0;//油箱油量
int nowq=0;//从本位置开始的油箱油量
int l=gas.size();
for(int i=0;i<l;i++)
{
qty=qty+gas[i]-cost[i];
nowq=nowq+gas[i]-cost[i];
if(now<0){
now=0;
pos=i+1;
}
}
if(qty<0)
return -1;
else
return pos;
}
};
题目链接:https://leetcode-cn.com/problems/gas-station/submissions/