hy_jz
码龄10年
关注
提问 私信
  • 博客:66,124
    66,124
    总访问量
  • 9
    原创
  • 561,109
    排名
  • 34
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:天津市
  • 加入CSDN时间: 2015-06-29
博客简介:

hy_jz的博客

查看详细资料
个人成就
  • 获得32次点赞
  • 内容获得14次评论
  • 获得117次收藏
创作历程
  • 4篇
    2018年
  • 5篇
    2017年
成就勋章
TA的专栏
  • 神经网络
    1篇
  • NE
    1篇
  • heterogene
    4篇
  • KG
    1篇
  • AI
    1篇
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

海知智能实习总结

暑期在上海海知智能公司实习两个月,算法岗位,主要工作内容机器学习、深度学习、自然语言处理(NLP)。工程项目和科学研究很不相同,主要是算法的落地之前项目经验较少,本次实习收获颇丰,学习过程中也是参考多个博客和网上资料,写个总结记录一下。算法涉及到的除了数据预处理和特征提取,主要算法有:nlp相关算法 命名实体识别:lstm+crf并结合中文分析,seq2seq等;文本分类...
原创
发布博客 2018.09.05 ·
2476 阅读 ·
1 点赞 ·
1 评论 ·
4 收藏

异质网络表示--Structural Deep Embedding for Hyper-Networks

[Structural Deep Embedding for Hyper-Networks](https://arxiv.org/abs/1711.10146) 是在hyperedge(超边是不可分解的)的基础上保留object的一阶和二阶相似性,学习异质网络表示。于与HEBE的区别在于,本文考虑了网络high-oeder网络结构和高度稀疏性。传统的基于clique expansion 和star
原创
发布博客 2018.01.10 ·
3150 阅读 ·
2 点赞 ·
1 评论 ·
6 收藏

异质网络表示--基于hyperedge

hyper graph是一种广义上的图,它的边可以连接任意数量的定点。[维基百科](https://zh.wikipedia.org/wiki/%E8%B6%85%E5%9B%BE)。超图是一个集合组 H=<X,E>H=<X,E>, X是一个有限集合,该集合的元素称为节点或顶点;E是X的非空子集的集合,成为超边(hyper edge)或连接。因此,E是P(X)∖{ϕ}\mathcal{P}(X) \
原创
发布博客 2018.01.08 ·
8681 阅读 ·
1 点赞 ·
0 评论 ·
14 收藏

Knowledge Graph表示学习--TransE系列

知识图谱(Knowledge Graph or KG),如: Free Base、DBpedia、YAGO、NELL等已经成功地应用到语义分析、信息抽取、问答系统等方面。知识图谱是由实体(entity)和关系(relations: 不同类型的边)构成的多关系图。每一条边都以三元组的形式呈现(head entity, relation, tail entity),这也叫做fact。 KG Embed
原创
发布博客 2018.01.01 ·
14496 阅读 ·
7 点赞 ·
1 评论 ·
45 收藏

基于meta-path的异质网络Embedding-HIN2vec

HIN2vec 主要是学习异质网络节点和关系的embedding向量表示。HIN2vec主要跟为训练数据准备和表示学习两部分。在训练数据准备中,将网络数据表示成<x,y,r,L(x,y,r)><x,y,r,L(x,y,r)>的形式,它堆不同的关系类型 r 加以区分;在表示学习中,主要实现方式是最大化多个联合(jointly)二分类的概率(预测将relation的类别:即两个节点之间是否存在某种指定的
原创
发布博客 2017.12.29 ·
5611 阅读 ·
1 点赞 ·
1 评论 ·
16 收藏

基于meta-path的异质网络Embedding-metapath2vec

metapath2vec: Scalable Representation Learning for Heterogeneous Networksmetapath2vec https://dl.acm.org/citation.cfm?id=3098036是17年发表的,使用基于meta-path的随机游走重构节点的异质邻居,并用异质的skip-gram模型求解节点的网络表示。DeepWalk 是同
原创
发布博客 2017.12.22 ·
11136 阅读 ·
5 点赞 ·
6 评论 ·
15 收藏

Meta Path

Meta Path 是2011年 Yizhou Sun etc. 提出的 http://www.morganclaypool.com/doi/abs/10.2200/S00433ED1V01Y201207DMK005, 针对异质网络中的相似性搜索。Meta Path 是一条包含relation序列的路径,而这些 relation 定义在不同类型object之间。Information Networ
原创
发布博客 2017.12.21 ·
11555 阅读 ·
11 点赞 ·
2 评论 ·
40 收藏

GAN在网络表示中的应用--GraphGAN、Adversarial Network Embedding

GAN(Generative Adversarial Networks)在图像、文本数据的表示学习中应用广泛。对抗网络包含两部分,生成器和判别器。生成器的目的是生成与真实数据尽可能相似的数据,去“欺骗”判别器;判别器的目的是尽可能地将真实数据和生成的数据区分开。对抗训练就是生成器和判别器之间的一种“zero-sum”博弈,此消彼长,达到难以区分真实数据和生成器生成数据的效果。Graph
原创
发布博客 2017.12.18 ·
8256 阅读 ·
4 点赞 ·
2 评论 ·
13 收藏

GANs学习(GAN、wGAN)

GANs学习(GAN、wGAN)原始GANGANs (Generative Adversarial Networks) [1]是2014年 Goodfellow 提出的,一种zero-sum博弈过程:生成器[generator] 和判别器[discriminator]之间的此消彼长D和G play a two-player minimax game: minGmaxDV(D,G)=Ex∼pdata
原创
发布博客 2017.12.15 ·
746 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏