基于meta-path的异质网络Embedding-metapath2vec

metapath2vec是针对异质网络的表示学习方法,通过基于meta-path的随机游走和skip-gram模型,解决异质网络中不同节点类型的上下文问题。该模型提出两种变体:metapath2vec和metapath2vec++,后者引入了异质负采样以考虑节点类型。实验展示了在多任务如分类、聚类和相似性搜索中的有效性和效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

metapath2vec: Scalable Representation Learning for Heterogeneous Networks

metapath2vec https://dl.acm.org/citation.cfm?id=3098036是17年发表的,使用基于meta-path的随机游走重构节点的异质邻居,并用异质的skip-gram模型求解节点的网络表示。DeepWalk 是同质网络中的表示学习方法,并不能直接应用到异质网络。比如:并不能解决多种类型节点的“word-context”对的问题,异质网络中的random walk问题。

本文提出了两种模型,metapath2vec 和 metapath2vec++。模型框架如下图所示:

这里写图片描述

  • Heterogeneous Skip-Gram
    对于一个 |TV|>1 的异质网络 G=(V,E,T)(ϕ:VTV,ψ:ETE) ,metapath2vec通过skip-gram模型学习网络表示。给定一个节点v, 它最大化节点的异质上下文(context) Nt(v),(tTV)
    argmaxθvVtTVctNt(v)p(ct|v;θ)(1)

条件概率 p(ct|v;θ) 定义为soft-max函数 p(ct|v;

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值