异质网络表示--Structural Deep Embedding for Hyper-Networks

[Structural Deep Embedding for Hyper-Networks](https://arxiv.org/abs/1711.10146) 是在hyperedge(超边是不可分解的)的基础上保留object的一阶和二阶相似性,学习异质网络表示。于与HEBE的区别在于,本文考虑了网络high-oeder网络结构和高度稀疏性。 传统的基于clique expansion 和star expansion的方法,显式或者隐式地分解网络(如下图所示)。也就说,分解后hyper edge节点地子集,依然可以构成一个新的超边。对于同质网络这个假设是合理地,因为同质网络地超边,大多数情况下都是根据潜在地相似性(共同地标签等)构建的。

但是在异质网络中要解决两个问题:不可分解性和结构保留。对于不可分解性,作者设计了不可分解的tuplewise相似性函数。这个相似性函数定义在hyper edge的所有节点上,确保超边的子集并没有融合在网络表示中,并且这个函数是非线性的。为了保留网络结构,作者设计了一个 Auto encoder,通过重构节点的邻居结构来学习节点表示,也就说有相似邻居的节点将有相似的向量表示,每一种节点类型对应一个auto encoder。这两部分在模型中,联合优化来同时解决这两个问题。模型框架图如下:

####几个定义 **1. Hyper Network:**一般形式为 G=(V,E) ,有T个类型的节点 V={ Vt}Tt=1 ,网络中的边是超边:即可以连接任意数量的节点: E={ Ei=(v1,v2,vni)}(ni2) 。如果每个超边只连接两个节点,那么就退化为一般的network;如果 T2 ,那么就是 heterogeneous hyper-network。 **2. First-Order Similarity:** 一阶相似性衡量的是节点间的N-tuplewise相似性。对于节点 v1,v2,,vN ,如果他们之间存在超边,那么这N个节点的一阶相似性是1,但是这种相似性并不存在于这N个节点的子集上。 **3. Second-Order Similarity:** hyper-network上的二阶相似性,衡量的是节点的邻居结构之间的相似性。邻居指的是: Eivi,ifviEi 。 #### Loss Function 节点 vi 的向量表示是 Xi ,S表示 N-tuplewise的相似性函数。也就说 1. if (v1,v2,,
  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值