题目描述
一个数如果恰好等于它的各因子(该数本身除外)子和,如:6=3+2+1。则称其为“完数”;若因子之和大于该数,则称其为“盈数”。 求出2到60之间所有“完数”和“盈数”。
输入描述:
题目没有任何输入。
输出描述:
输出2到60之间所有“完数”和“盈数”,并以如下形式输出: E: e1 e2 e3 ......(ei为完数) G: g1 g2 g3 ......(gi为盈数) 其中两个数之间要有空格,行尾不加空格。 方法:求一个数的所有因数之和 一个数N可以表示成若干素数的乘积,其中a0~an为素数 如N=a0^k0+a1^k1+...+an^kn 所有因数之和为(1+a0+a0^2+...+a0^k0)*(1+a1+a1^2+...+a1^k1)*...*(1+an+an^2+...+an^kn) 用等比数列公式化简一下:((1-a0^(k0+1))/(1-a0))*((1-a1^(k1+1))/(1-a1))*...*((1-an^(kn+1))/(1-ak))
#include <iostream>
#include <cstdio>
#include <vector>
#include <cstring>
using namespace std;
const int maxn=100;
int cnt=0;
bool vis[maxn];
int prime[maxn];
int compute(int num);
void getprime();
int quick_pow(int a,int b);
int main()
{
getprime();
vector<int> E,G;
for(int i=2;i<=60;i++)
{
int num=compute(i);
num-=i;
if(num==i) E.push_back(i);
if(num>i) G.push_back(i);
}
printf("E:");
for(int i=0;i<E.size();i++)
printf(" %d",E[i]);
printf("\n");
printf("G:");
for(int i=0;i<G.size();i++)
printf(" %d",G[i]);
printf("\n");
return 0;
}
void getprime()
{
memset(vis,0,sizeof(vis));
for(int i=2;i<maxn;i++)
{
if(!vis[i]) prime[cnt++]=i;
for(int j=0;j<cnt&&prime[j]*i<maxn;j++)
{
vis[prime[j]*i]=true;
if(i%prime[j]==0) break;
}
}
}
int compute(int num) //计算num的所有因子之和
{
int num1[maxn];
int num2[maxn];
memset(num2,0,sizeof(num2));
int len=0,ans=1;
for(int i=0;i<cnt&&num!=1;i++)
{
if(num%prime[i]==0) num1[len++]=prime[i];
while(num%prime[i]==0)
{
num/=prime[i];
num2[len-1]++;
}
}
for(int i=0;i<len;i++)
ans*=(1-quick_pow(num1[i],num2[i]+1))/(1-num1[i]);
return ans;
}
int quick_pow(int a,int b)
{
int ans=1;
while(b)
{
if(b&1) ans=ans*a;
a*=a;
b>>=1;
}
return ans;
}