uva 10759(数论)

题意:有n个骰子,给出一个目标值x,求出得到的所有骰子点数之和大于x的概率。

题解:分母肯定是6^n,分子需要dp得到,开一个二维数组f[i][j]表示i个骰子组成和大于等于j的情况有多少种。状态转移方程是f[i][j + k] += f[i - 1][j],然后两个值求最大公约数约分一下就可以了。


#include <stdio.h>
#include <string.h>
#include <math.h>
#define ll long long
int n, sum;
ll f[25][160];

ll gcd(ll a, ll b) {
	return b == 0 ? a : gcd(b, a % b);
}

void init() {
	memset(f, 0, sizeof(f));
	f[0][0] = 1;
	for (int i = 1; i <= 24; i++)
		for (int j = 0; j <= 150; j++)
			if (f[i - 1][j])
				for (int k = 1; k <= 6; k++)
					f[i][j + k] += f[i - 1][j];
}

int main() {
	init();
	while (scanf("%d%d", &n, &sum) && n + sum) {
		if (sum <= n) {
			printf("1\n");
			continue;
		}
		ll res1 = 0, res2 = pow(6, n);
		for (int i = sum; i <= 150; i++)
			res1 += f[n][i];
		if (res1 == 0) {
			printf("0\n");
			continue;
		}
		long long temp = gcd(res1, res2);
		printf("%lld/%lld\n", res1 / temp, res2 / temp);
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值