树形动态规划

文章讲述了如何使用树形动态规划(TreeDP)解决求一棵树中以任意节点为根的子树点权值和的最大值问题,通过递归计算每个节点的dp值,并在子节点中选择使总和最大的组合。
摘要由CSDN通过智能技术生成

一、问题简述

有一棵 n n n 个节点组成的树,每个节点 a i a_i ai 有一个权值 a i . w o r t h a_i.worth ai.worth。求子树的点权值和的最大值。


二、算法简析

该问题要用树形dp求解。
d p [ u ] = dp[u] = dp[u]= u u u 为根节点的子树的点权值和的最大值。我们采用邻接表的形式存储边, G [ u ] = G[u] = G[u]= u u u 为起点的边的集合,则 v ∈ { G [ u ] [ i ]   ∣   0 ≤ i ≤ G [ u ] . s i z e ( ) } v\in \{G[u][i]~|~0\leq i \leq G[u].size() \} v{G[u][i]  0iG[u].size()} u u u 的孩子。
u u u 为根节点的子树肯定有 u u u,所以 d p [ u ] dp[u] dp[u] 的初始值为 u . w o r t h u.worth u.worth。以 u u u 的孩子 v v v 为根节点的子树,是否要加入以 u u u 为根节点的子树,取决于 d p [ v ] dp[v] dp[v] 是否大于 0 0 0。只要 d p [ v ] > 0 ,   v ∈ { G [ u ] [ i ]   ∣   0 ≤ i < G [ u ] . s i z e ( ) } dp[v]>0,~v\in \{G[u][i]~|~0\leq i < G[u].size() \} dp[v]>0, v{G[u][i]  0i<G[u].size()},就要 d p [ u ]  +=  d p [ v ] dp[u]~\text{+=}~dp[v] dp[u] += dp[v]
所以,方程为:

d p [ u ] = u . w o r t h + ∑ v ∈ G [ u ] max ( d p [ v ] , 0 ) \begin{split} dp[u] = u.worth + \sum_{v\in G[u]} \text{max}(dp[v], 0) \\ \end{split} dp[u]=u.worth+vG[u]max(dp[v],0)

最后,我们只要遍历 d p [ ] dp[] dp[],找到最大值即可。


三、相关题目

3.1 P8625 [蓝桥杯 2015 省 B]

#include <bits/stdc++.h>

using namespace std;

const int MAX = 1e5 + 3;

typedef long long ll;

int A[MAX], n;
vector<int> G[MAX];
ll dp[MAX];
bool vis[MAX];

int quickin(void)
{
	int ret = 0;
	bool flag = false;
	char ch = getchar();
	while (ch < '0' || ch > '9')
	{
		if (ch == '-')    flag = true;
		ch = getchar();
	}
	while (ch >= '0' && ch <= '9' && ch != EOF)
	{
		ret = ret * 10 + ch - '0';
		ch = getchar();
	}
	if (flag)    ret = -ret;
	return ret;
}

void dfs(int u, int pre)
{	
	dp[u] = A[u];
	for (int i = 0; i < G[u].size(); i++)
	{
		int v = G[u][i];
		if (v != pre)
		{
			dfs(v, u);
			if (dp[v] > 0)
				dp[u] += dp[v];
		}
	}
}

int main()
{
	#ifdef LOCAL
	freopen("test.in", "r", stdin);
	#endif
	
	n = quickin();
	for (int i = 1; i <= n; i++)
		A[i] = quickin();
	for (int i = 0; i < n - 1; i++)
	{
		int a, b;
		a = quickin(), b = quickin();
		G[a].push_back(b);
		G[b].push_back(a);
	}
	
	dfs(1, 0);
	
	ll ans = 0;
	for (int i = 1; i <= n; i++)
		ans = max(ans, dp[i]); 
	
	cout << ans << endl;
	
	return 0;	
} 

注:

  • 1、该问题允许空集存在,所以 a n s ≥ 0 ans \geq 0 ans0,即 a n s ans ans 的初始值为 0 0 0

3.2 P1122 最大子树和

#include <bits/stdc++.h>

using namespace std;

const int MAX = 1e5 + 3;

typedef long long ll;

int A[MAX], n;
vector<int> G[MAX];
ll dp[MAX];
bool vis[MAX];

int quickin(void)
{
	int ret = 0;
	bool flag = false;
	char ch = getchar();
	while (ch < '0' || ch > '9')
	{
		if (ch == '-')    flag = true;
		ch = getchar();
	}
	while (ch >= '0' && ch <= '9' && ch != EOF)
	{
		ret = ret * 10 + ch - '0';
		ch = getchar();
	}
	if (flag)    ret = -ret;
	return ret;
}

void dfs(int u, int pre)
{	
	dp[u] = A[u];
	for (int i = 0; i < G[u].size(); i++)
	{
		int v = G[u][i];
		if (v != pre)
		{
			dfs(v, u);
			if (dp[v] > 0)
				dp[u] += dp[v];
		}
	}
}

int main()
{
	#ifdef LOCAL
	freopen("test.in", "r", stdin);
	#endif
	
	n = quickin();
	for (int i = 1; i <= n; i++)
		A[i] = quickin();
	for (int i = 0; i < n - 1; i++)
	{
		int a, b;
		a = quickin(), b = quickin();
		G[a].push_back(b);
		G[b].push_back(a);
	}
	
	dfs(1, 0);
	
	ll ans = dp[1];
	for (int i = 1; i <= n; i++)
		ans = max(ans, dp[i]); 
	
	cout << ans << endl;
	
	return 0;	
} 

注:

  • 1、与上题不同,该题不允许出现空集,所以 a n s ans ans d p [ ] dp[] dp[] 中的最大值,不需要与 0 0 0 比较,可能为负值。

  • 24
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值