题目描述:
题意,给你一张N*M表格,表格的每一个点都有一个数。你需要从表格的左上角走到表格的右下角,每次只能朝下或者朝右走,这样走到右下角之后会形成一条长度为(N+M-1)的路径,将这路径经过的所有数形成一个(N+M-1)的数列,你需要按题中给出的计算式算出一个值,你需要保证所求的值最小。
对于这种题给人的第一反应就是DP,但是题目给的式子无法设计状态进行状态转移,那么我们需要将式子推导一下。首先题目要求的很明显是数列的方差,方差的公式稍微推导一下应该不难推出答案为,设x=(N+M-1),x*(a1^2+a2^2+...ax^2)-(a1+a2+...ax),这样写出来之后设计状态就方便了,dp[i][j][k],表示走到i,j位置时,数列和为k时的数列的各项平方的和,由于题目数据的限制,每个格子里的数字不会超过30,也就是说我们最大的和不会超过1800所以我们第三维k是十分好枚举的,并且数据规模也不大,直接暴力DP即可。
AC代码:
#include<iostream>
#include<string>
#include<cstring>
#include<cmath>
#include<cstdio>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<algorithm>
using namespace std;
const int MAXM=100010;
const int bit=4;
const int INF=0x3f3f3f3f;
const int maxm=60*30;
const long long MOD=998244353;
int a[32][32];
int dp[32][32][2710];
int n,m;
int main()
{
int T;
scanf("%d",&T);
int cas=1;
while(T--)
{
scanf("%d%d",&n,&m);
for (int i=0;i<n;i++)
for (int j=0;j<m;j++)
scanf("%d",&a[i][j]);
memset(dp,INF,sizeof(dp));
int sum=a[0][0];
dp[0][0][sum]=sum*sum;
for (int i=0;i<n;i++)
{
for (int j=0;j<m;j++)
{
if (i+1<n)
{
for (int k=0;k<=maxm;k++)
{
if (dp[i][j][k]==INF) continue;
int now=k+a[i+1][j];
int y=a[i+1][j];
dp[i+1][j][now]=min(dp[i+1][j][now],dp[i][j][k]+y*y);
}
}
if (j+1<m)
{
for (int k=0;k<maxm;k++)
{
if (dp[i][j][k]==INF) continue;
int now=k+a[i][j+1];
int y=a[i][j+1];
dp[i][j+1][now]=min(dp[i][j+1][now],dp[i][j][k]+y*y);
}
}
}
}
int x=n+m-1;
int ans=INF;
for (int k=0;k<maxm;k++)
{
if (dp[n-1][m-1][k]==INF) continue;
ans=min(ans,x*dp[n-1][m-1][k]-k*k);
}
printf("Case #%d: %d\n",cas,ans);
cas++;
}
return 0;
}