行人重识别 MSMT17数据集描述

        最近的CVPR2018会议上,提出了一个新的更接近真实场景的大型数据集MSMT17,即Multi-Scene Multi-Time,涵盖了多场景多时段。

 

早期数据集的缺点

(1)和实际的监控网络相比,数据集中行人和摄像头的数目不多;

(2)大多数数据集仅覆盖单一场景;

(3)时间跨度短,没有显著的光照变化;

(4)行人检测器有昂贵的人工标注或过时的DPM模型实现。

 

MSMT17数据集描述

        数据集采用了安防在校园内的15个摄像头网络,其中包含12个户外摄像头和3个室内摄像头。为了采集原始监控视频,在一个月里选择了具有不同天气条件的4天。每天采集3个小时的视频,涵盖了早上、中午、下午三个时间段。因此,总共的原始视频时长为180小时。

        基于Faster RCNN作为行人检测器,三位人工标注员用了两个月时间查看检测到的包围框和标注行人标签。最终,得到4101个行人的126441个包围框。和其它数据集的对比以及统计信息如下图所示。

MSMT17数据集的特点如下:

(1)数目更多的行人、包围框、摄像头数;

(2)复杂的场景和背景;

(3)涵盖多时段,因此有复杂的光照变化;

(4)更好的行人检测器(faster RCNN)

 

评估协议

        按照训练-测试为1:3的比例对数据集进行随机划分,而不是像其他数据集一样均等划分。这样做的目的是鼓励高效率的训练策略,由于在真实应用中标注数据的昂贵。

        最后,训练集包含1041个行人共32621个包围框,而测试集包括3060个行人共93820个包围框。对于测试集,11659个包围框被随机选出来作为query,而其它82161个包围框作为gallery.

        测试指标为CMC曲线和mAP. 对于每个query, 可能存在多个正匹配。

 

参考

[1] 数据集地址(含下载链接) https://www.pkuvmc.com/publications/msmt17.html

[2] 论文 Person Transfer GAN to Bridge Domain Gap for Person Re-Identification

 

 

### MSMT17 数据集结构介绍 MSMT17 是一个多场景多时间行人重识别(ReID)数据集,其设计目的是为了应对现实世界中的复杂环境变化。此数据集提供了丰富的图像资源以及详细的标注信息。 #### 文件夹层次结构 整个数据集被组织在一个清晰的文件夹结构下: - **bounding_box_train/** 这个文件夹包含训练集中所有带标签的人体边界框图片[^2]。 - **bounding_box_test/** 测试集中的带有边框的行人图像位于这个目录中,这些图像是用来评估模型性能的关键部分。 - **query/** 查询图像存放在这一文件夹里,它们是从测试视频序列中提取出来的帧,用于查询匹配任务。 - **mask_train_v2/** 和 **mask_test/** 提供了分割掩膜,有助于更精确地定位人体轮廓,分别对应于训练和测试阶段[^3]。 - **list_query.txt**, **list_gallery.txt**, **list_train.txt** 上述文本文件列出了相应子集中每张图片的信息,包括路径、身份编号等重要元数据。 #### 图像采集特点 - 来自多个摄像头视角下的高质量RGB照片; - 跨越不同时间段拍摄,涵盖了白天黑夜等多种光照条件; - 不同天气状况如晴天雨天均有涉及; 通过上述精心构建的数据分布,使得基于该数据集开发出的算法能够更好地适应实际应用场景的需求。 ```python import os def explore_msmt17_structure(dataset_path): """ 打印并探索 MSMT17 数据集的基本结构 参数: dataset_path (str): MSMT17 数据集根目录路径 返回: None """ folders = ['bounding_box_train', 'bounding_box_test', 'query'] for folder in folders: path = os.path.join(dataset_path, folder) if not os.path.exists(path): print(f"{folder} does not exist.") continue files = os.listdir(path) num_files = len(files) print(f"Folder {folder}: Contains {num_files} images.") explore_msmt17_structure('/path/to/msmt17') ```
评论 35
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值