TPAMI 2025 | 抗遗忘的无监督行人重识别适应方法

论文信息

题目:Anti-Forgetting Adaptation for Unsupervised Person Re-Identification
抗遗忘的无监督行人重识别适应方法
作者:Hao Chen, Francois Bremond, Nicu Sebe, Shiliang Zhang

论文创新点

  1. 双层次联合适应与抗遗忘框架(DJAA):通过原型和实例层次的对比学习,逐步适应新域而不遗忘旧域知识。
  2. 混合内存缓冲区:存储少量代表性图像和聚类原型,通过正则化图像到图像和图像到原型的相似性来复习旧知识。
  3. 向后兼容性增强:通过保持新旧模型之间的表示一致性,避免频繁重新提取图库特征,提升系统效率。

摘要

传统的无监督域自适应行人重识别(ReID)方法主要关注将模型从源域适应到固定的目标域。然而

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值