回溯法的实现

【递归实现】

 void backtrack (int t)

{

if (t>n) output(x);

else

for(int i=f(n,t):i<=g(n,t):i++)//f(n,t),g(n,t)表示当前扩展节点处未搜索过的子树的起始编号和终止编号

{

x[t]=h[t];//h(i)为当前扩展节点处x[t]的第i个可选值

if(constraint(t)&&bound(t))   backtrack(t+1);//constraint(t)&&bound(t)是当前扩展节点处的约束函数和限界函数

}

【迭代回溯】

void iterative()

{

int t=1;

while(t>0)

{

if(f(n,t)<=g(n,t))

for(int i=f(n,t):i<=g(n,t):i++)

{

x[i]=h[i];

if(constrain(t)&&bound(t)){

    if(solution(t))   output(x);//solution (t)判断在当前扩展节点处是否已得问题的可行解

else t++;

}

else t--;

}

}

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值