Given a string s, partition s such that every substring of the partition is a palindrome.
Return the minimum cuts needed for a palindrome partitioning of s.
For example, given s = "aab",
做法就是当确认最后都分解好的时候计算所用的迭代次数。
Return the minimum cuts needed for a palindrome partitioning of s.
For example, given s = "aab",
Return 1 since the palindrome partitioning ["aa","b"] could be produced using 1 cut.
这题的标准解法是用动态规划,我自己先用了dfs的方法 但是解出来超时。 解法和palindrome I的一样。
class Solution:
def check(self,s):
for index in range(len(s)):
if s[index]!=s[len(s)-index-1]:
return False
return True
def dfs(self,s,count,valuelist):
if len(s)==0:
#solution.append(valuelist)
Solution.minval=min(Solution.minval,count)
for index in range(1,len(s)+1):
if self.check(s[:index])==True:
self.dfs(s[index:],count+1,valuelist+[s[:index]])
def solve(self,s):
Solution.minval=10000
self.dfs(s,0,[])
print Solution.minval
def main():
s="aazbcc"
solution=Solution()
solution.solve(s)
if __name__=="__main__":
main()
做法就是当确认最后都分解好的时候计算所用的迭代次数。
另外一种解法是用动态规划的方法 借鉴了 http://www.cnblogs.com/zuoyuan/p/3758783.html
class Solution:
# @param s, a string
# @return an integer
def minCut(self, s):
dp=[0 for i in range(len(s)+1)]
p=[[False for i in range(len(s))] for j in range(len(s))]
for i in range(len(s)+1):
dp[i]=len(s)-i
for i in reversed(range(len(s)-1)):
for j in range(i,len(s)):
if s[i]==s[j] and (j-i<2 or p[i+1][j-1]):
p[i][j]=True
dp[i]=min(dp[i],1+dp[j+1])
return dp[0]-1