Data MIning & Machine Learning
文章平均质量分 54
「已注销」
这个作者很懒,什么都没留下…
展开
-
数据挖掘(入门知识)
最近在看一本叫《大话数据挖掘》的书,简单的摘要总结一些数据挖掘的基础理论知识: 1.Data Mining(在学术界也叫KDD:knowledge discovery in database) ,就是从大量的、不完全的、有噪声的、模糊的、随机的 数据中,提取隐含在其中的,我们事先不知道的、又潜在有用信息的知识的过程。(大多算法建立在:统计学的大数定律基础上) 2.D原创 2015-01-10 16:33:51 · 1077 阅读 · 0 评论 -
机器学习 学习资料整理
发现一个外国的学习ML的网站,介绍分类、回归、聚类等等知识,感觉非常不错就记录下,以后遇到好的学校资料,也会整理分享到这里http://scikit-learn.org/stable/index.html原创 2015-07-24 16:26:45 · 930 阅读 · 0 评论 -
分类和聚类&&有监督学习和无监督学习
简单来讲:有监督 -> 分类(回归) -> 识别;无监督 -> 聚类 -> 分割;' -> ' 表示对应关系(ps:这个说法来自于《学习Opencv》这样讲不知道有没有问题,目前我是这样理解的)一、分类和聚类简单地说,分类(Categorization or Classification)就是按照某种标准给对象贴标签(label),再根据标签来区分归类。简单地原创 2015-07-23 09:22:17 · 16398 阅读 · 0 评论 -
聚类算法总结
聚类算法总结:---------------------------------------------------------聚类算法的种类:基于划分聚类算法(partition clustering)k-means:是一种典型的划分聚类算法,它用一个聚类的中心来代表一个簇,即在迭代过程中选择的聚点不一定是聚类中的一个点,该算法只能处理数值型数据转载 2015-07-24 16:20:38 · 805 阅读 · 0 评论 -
windows下运行caffe例子:cifar10图像训练生成caffemodel
硕士毕业论文第二点扯到了CNN上,准备用caffe框架来做,装好windows下caffe后运行了第一个经典例子LeNet :参考:http://blog.csdn.net/tianrolin/article/details/51434687 运行第二个cifar10例子时,不会写bat文件,运行也各种错误,这里总结一下我遇到的问题和解决办法。亲测有用! 一、数据集准备 到官网中下载cifar原创 2016-06-19 18:36:40 · 3625 阅读 · 4 评论 -
caffe 进行自己的imageNet训练分类:loss一直是87.3365,accuracy一直是0
caffe 进行自己的imageNet训练分类:loss一直是87.3365,accuracy 一直是0,可能的原因是: 标签的问题: imagelist中,图像分类的标签label一定要从0开始,分类层的 num_output 和 标签的值域 不符合: a. 要知道imagenet是进行1000类的分类任务,我自己的数据是一个二分类,就一定要把最后‘fc8’InnerProduct的分类原创 2016-07-17 17:11:49 · 11588 阅读 · 1 评论