Spark性能优化:开发调优

优化一:避免创建重复的RDD

通常来说,我们在开发一个Spark作业时,首先是基于某个数据源(比如Hive表或HDFS文件)创建一个初始的RDD;接着对这个RDD执行某个算子操作,然后得到下一个RDD;以此类推,循环往复,直到计算出最终我们需要的结果。在这个过程中,多个RDD会通过不同的算子操作(比如map、reduce等)串起来,这个“RDD串”,就是RDD lineage,也就是“RDD的血缘关系链”。

   我们在开发过程中要注意:对于同一份数据,只应该创建一个RDD,不能创建多个RDD来代表同一份数据。

   一些Spark初学者在刚开始开发Spark作业时,或者是有经验的工程师在开发RDD lineage极其冗长的Spark作业时,可能会忘了自己之前对于某一份数据已经创建过一个RDD了,从而导致对于同一份数据,创建了多个RDD。这就意味着,我们的Spark作业会进行多次重复计算来创建多个代表相同数据的RDD,进而增加了作业的性能开销。


优化二:尽可能复用同一个RDD

1、我们除了要避免在开发过程中对一份完全相同的数据创建多个RDD之外,在对不同的数据执行算子操作时还要尽可能地复用一个RDD。

2、比如说,有一个RDD的数据格式是key-value类型的,另一个是单value类型的,这两个RDD的value数据是完全一样的。那么此时我们可以只使用key-value类型的那个RDD,因为其中已经包含了另一个的数据。对于类似这种多个RDD的数据有重叠或者包含的情况,我们应该尽量复用一个RDD,这样可以尽可能地减少RDD的数量,从而尽可能减少算子执行的次数。


优化三:对多次使用的RDD进行持久化

1、当我们在Spark代码中多次对一个RDD做了算子操作后,恭喜,你已经实现Spark作业第一步的优化了,也就是尽可能复用RDD。此时就该在这个基础之上,进行第二步优化了,也就是要保证对一个RDD执行多次算子操作时,这个RDD本身仅仅被计算一次。

2、Spark中对于一个RDD执行多次算子的默认原理是这样的:每次你对一个RDD执行一个算子操作时,都会重新从源头处计算一遍,计算出那个RDD来,然后再对这个RDD执行你的算子操作。这种方式的性能是很差的。

3、因此对于这种情况,我们的建议是:对多次使用的RDD进行持久化。此时Spark就会根据你的持久化策略,将RDD中的数据保存到内存或者磁盘中。以后每次对这个RDD进行算子操作时,都会直接从内存或磁盘中提取持久化的RDD数据,然后执行算子,而不会从源头处重新计算一遍这个RDD,再执行算子操作。

优化四:尽量避免使用shuffle类算子

1、如果有可能的话,要尽量避免使用shuffle类算子。因为Spark作业运行过程中,最消耗性能的地方就是shuffle过程。shuffle过程,简单来说,就是将分布在集群中多个节点上的同一个key,拉取到同一个节点上,进行聚合或join等操作。比如reduceByKey、join等算子,都会触发shuffle操作。

2、shuffle过程中,各个节点上的相同key都会先写入本地磁盘文件中,然后其他节点需要通过网络传输拉取各个节点上的磁盘文件中的相同key。而且相同key都拉取到同一个节点进行聚合操作时,还有可能会因为一个节点上处理的key过多,导致内存不够存放,进而溢写到磁盘文件中。因此在shuffle过程中,可能会发生大量的磁盘文件读写的IO操作,以及数据的网络传输操作。磁盘IO和网络数据传输也是shuffle性能较差的主要原因。

3、因此在我们的开发过程中,能避免则尽可能避免使用reduceByKey、join、distinct、repartition等会进行shuffle的算子,尽量使用map类的非shuffle算子。这样的话,没有shuffle操作或者仅有较少shuffle操作的Spark作业,可以大大减少性能开销。


优化五:使用map-side预聚合的shuffle操作

如果因为业务需要,一定要使用shuffle操作,无法用map类的算子来替代,那么尽量使用可以map-side预聚合的算子。

   1、所谓的map-side预聚合,说的是在每个节点本地对相同的key进行一次聚合操作,类似于MapReduce中的本地combiner。map-side预聚合之后,每个节点本地就只会有一条相同的key,因为多条相同的key都被聚合起来了。其他节点在拉取所有节点上的相同key时,就会大大减少需要拉取的数据数量,从而也就减少了磁盘IO以及网络传输开销。通常来说,在可能的情况下,建议使用reduceByKey或者aggregateByKey算子来替代掉groupByKey算子。因为reduceByKey和aggregateByKey算子都会使用用户自定义的函数对每个节点本地的相同key进行预聚合。而groupByKey算子是不会进行预聚合的,全量的数据会在集群的各个节点之间分发和传输,性能相对来说比较差。

   2、比如:分别基于reduceByKey和groupByKey进行单词计数。其中第一张图是groupByKey的原理图,可以看到,没有进行任何本地聚合时,所有数据都会在集群节点之间传输;第二张图是reduceByKey的原理图,可以看到,每个节点本地的相同key数据,都进行了预聚合,然后才传输到其他节点上进行全局聚合。

优化六:使用高性能的算子

除了shuffle相关的算子有优化原则之外,其他的算子也都有着相应的优化原则。

1、使用reduceByKey/aggregateByKey替代groupByKey

2、使用mapPartitions替代普通map

   mapPartitions类的算子,一次函数调用会处理一个partition所有的数据,而不是一次函数调用处理一条,性能相对来说会高一些。但是有的时候,使用mapPartitions会出现OOM(内存溢出)的问题。因为单次函数调用就要处理掉一个partition所有的数据,如果内存不够,垃圾回收时是无法回收掉太多对象的,很可能出现OOM异常。所以使用这类操作时要慎重!

3、使用foreachPartitions替代foreach

   原理类似于“使用mapPartitions替代map”,也是一次函数调用处理一个partition的所有数据,而不是一次函数调用处理一条数据。在实践中发现,foreachPartitions类的算子,对性能的提升还是很有帮助的。比如在foreach函数中,将RDD中所有数据写MySQL,那么如果是普通的foreach算子,就会一条数据一条数据地写,每次函数调用可能就会创建一个数据库连接,此时就势必会频繁地创建和销毁数据库连接,性能是非常低下;但是如果用foreachPartitions算子一次性处理一个partition的数据,那么对于每个partition,只要创建一个数据库连接即可,然后执行批量插入操作,此时性能是比较高的。实践中发现,对于1万条左右的数据量写MySQL,性能可以提升30%以上。

4、使用filter之后进行coalesce操作

   通常对一个RDD执行filter算子过滤掉RDD中较多数据后(比如30%以上的数据),建议使用coalesce算子,手动减少RDD的partition数量,将RDD中的数据压缩到更少的partition中去。因为filter之后,RDD的每个partition中都会有很多数据被过滤掉,此时如果照常进行后续的计算,其实每个task处理的partition中的数据量并不是很多,有一点资源浪费,而且此时处理的task越多,可能速度反而越慢。因此用coalesce减少partition数量,将RDD中的数据压缩到更少的partition之后,只要使用更少的task即可处理完所有的partition。在某些场景下,对于性能的提升会有一定的帮助。

5、使用repartitionAndSortWithinPartitions替代repartition与sort类操作

   repartitionAndSortWithinPartitions是Spark官网推荐的一个算子,官方建议,如果需要在repartition重分区之后,还要进行排序,建议直接使用repartitionAndSortWithinPartitions算子。因为该算子可以一边进行重分区的shuffle操作,一边进行排序。shuffle与sort两个操作同时进行,比先shuffle再sort来说,性能可能是要高的。


优化七:广播大变量


优化八:使用Kryo优化序列化性能

Spark实际上提供了两种序列化机制,它默认的是使用Java的序列化机制

   1、Java序列化机制:默认情况下,Spark使用Java自身的ObjectInputStream和ObjectOutputStream机制进行对象的序列化。只要你的类实现了Serializable接口,那么都是可以序列化的。而且Java序列化机制是提供了自定义序列化支持的,只要你实现Externalizable接口即可实现自己的更高性能的序列化算法。Java序列化机制的速度比较慢,而且序列化后的数据占用的内存空间比较大。

   2、Kryo序列化机制:Spark也支持使用Kryo类库来进行序列化。Kryo序列化机制比Java序列化机制更快,而且序列化后的数据占用的空间更小,通常比Java序列化的数据占用的空间要小10倍。Kryo序列化机制之所以不是默认序列化机制的原因是,有些类型虽然实现了Kryo接口,但是它也不一定能够进行序列化;此外,如果你要得到最佳的性能,Kryo还要求你在Spark应用程序中,对所有你需要序列化的类型都进行注册。


优化九:优化数据结构

1、要减少内存的消耗,除了使用高效的序列化类库以外,还有一个很重要的事情,就是优化数据结构。从而避免Java语法特性中所导致的额外内存的开销,比如基于指针的Java数据结构,以及包装类型。

2、有一个关键的问题,就是优化什么数据结构?其实主要就是优化你的算子函数,内部使用到的局部数据,或者是算子函数外部的数据。都可以进行数据结构的优化。优化之后,都会减少其对内存的消耗和占用可能以及合适的情况下,使用占用内存较少的数据结构,但是前提是要保证代码的可维护性

Java中,有三种类型比较耗费内存:

1、对象,每个Java对象都有对象头、引用等额外的信息,因此比较占用内存空间。

2、字符串,每个字符串内部都有一个字符数组以及长度等额外信息。

3、集合类型,比如HashMap、LinkedList等,因为集合类型内部通常会使用一些内部类来封装集合元素,比如Map.Entry。

   因此Spark官方建议,在Spark编码实现中,特别是对于算子函数中的代码,尽量不要使用上述三种数据结构,尽量使用字符串替代对象,使用原始类型(比如Int、Long)替代字符串,使用数组替代集合类型,这样尽可能地减少内存占用,从而降低GC频率,提升性能。

   但是我们要做到这些,其实很难。因为我们同时要考虑到代码的可维护性,如果一个代码中,完全没有任何对象抽象,全部是字符串拼接的方式,那么对于后续的代码维护和修改,无疑是一场巨大的灾难。同理,如果所有操作都基于数组实现,而不使用HashMap、LinkedList等集合类型,那么对于我们的编码难度以及代码可维护性,也是一个极大的挑战。因此老师建议,在可能以及合适的情况下,使用占用内存较少的数据结构,但是前提是要保证代码的可维护性


优化十:提高并行度

1、在我们提交我们的Spark程序时,Spark集群的资源并不一定会被充分使用,所以要设置合适的并行度,来充分利用我们集群的资源。

比如,Spark在读取HDFS文件时,默认情况下会根据每个block创建一个partition,也依据这个设置并行度。

2、我们有2种方式设置我们的并行度

1)手动使用textFile()、parallelize()等方法的第二个参数来设置并行度;

2)在sparkConf 或者Spark-submit中指定使用spark.default.parallelism参数,来设置统一的并行度。

3)Spark官方的推荐是,给集群中的每个cpu core设置2~3倍个task。

3、比如说,spark-submit设置了executor数量是100个,每个executor要求分配5个core,那么我们的这个application总共会有500个core。此时可以设置new SparkConf().set("spark.default.parallelism", "1200")来设置合理的并行度,从而充分利用资源。


优化十一:数据本地化

数据本地化对于Spark性能有着巨大的影响。如果数据以及要计算它的代码是在一起的,那么性能当然会非常高。但是,如果数据和计算它的代码是分开的,那么其中之一必须到另外一方的机器上。通常来说,移动代码到其他节点,会比移动数据到代码所在的节点上去,速度要快得多,因为代码比较小。Spark也正是基于这个数据本地化的原则来构建task调度算法的。

数据本地化,指的是,数据离计算它的代码有多近。基于数据距离代码的距离,有几种数据本地化级别:

1、PROCESS_LOCAL:数据和计算它的代码在同一个JVM进程中。

2、NODE_LOCAL:数据和计算它的代码在一个节点上,但是不在一个进程中,比如在不同的executor进程中,或者是数据在HDFS文件的block中。

3、NO_PREF:数据从哪里过来,性能都是一样的。

4、RACK_LOCAL:数据和计算它的代码在一个机架上。

5、ANY:数据可能在任意地方,比如其他网络环境内,或者其他机架上。


  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
智慧校园的建设目标是通过数据整合、全面共享,实现校园内教学、科研、管理、服务流程的数字化、信息化、智能化和多媒体化,以提高资源利用率和管理效率,确保校园安全。 智慧校园的建设思路包括构建统一支撑平台、建立完善管理体系、大数据辅助决策和建设校园智慧环境。通过云架构的数据中心与智慧的学习、办公环境,实现日常教学活动、资源建设情况、学业水平情况的全面统计和分析,为决策提供辅助。此外,智慧校园还涵盖了多媒体教学、智慧录播、电子图书馆、VR教室等多种教学模式,以及校园网络、智慧班牌、校园广播等教务管理功能,旨在提升教学品质和管理水平。 智慧校园的详细方案设计进一步细化了教学、教务、安防和运维等多个方面的应用。例如,在智慧教学领域,通过多媒体教学、智慧录播、电子图书馆等技术,实现教学资源的共享和教学模式的创新。在智慧教务方面,校园网络、考场监控、智慧班牌等系统为校园管理提供了便捷和高效。智慧安防系统包括视频监控、一键报警、阳光厨房等,确保校园安全。智慧运维则通过综合管理平台、设备管理、能效管理和资产管理,实现校园设施的智能化管理。 智慧校园的优势和价值体现在个性化互动的智慧教学、协同高效的校园管理、无处不在的校园学习、全面感知的校园环境和轻松便捷的校园生活等方面。通过智慧校园的建设,可以促进教育资源的均衡化,提高教育质量和管理效率,同时保障校园安全和提升师生的学习体验。 总之,智慧校园解决方案通过整合现代信息技术,如云计算、大数据、物联网和人工智能,为教育行业带来了革命性的变革。它不仅提高了教育的质量和效率,还为师生创造了一个更加安全、便捷和富有智慧的学习与生活环境。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值