机器学习(一)--概论

一、基本概念    

    机器学习也称为“统计机器学习”,学习的对象是“数据”。

    从数据出发,经过数据清洗,特征工程(主要环节是特征提取),抽象数据的模型(传统机器算法和深度学习算法),进而发现数据中的知识,最终又回到对数据的分析与预测中去。

   既然从数据出发,那么必然是多样的。目前工业界处理的对象主要是:文字(自然语言)、图片、音视频以及他们的组合。

二、前提-基本假设

    机器学习的关于数据的基本假设是:同类数据具有一定的统计规律性,这是机器学习的前提。同类数据指的是:具有某种共同性质的数据,如:文章、网页、数据库中的数据。用随机变量描述特征,用概率分布描述数据的统计规律。

三、机器学习的目的

    目的:通过   选择机器学习的算法模型+ 模型训练 ->能够对未知数据进行准确的预测与分析,并且能够不断的自我学习,提高学习效率。

四、机器学习的分类

1. 监督学习(supervised learning)

2. 非监督学习(unsupervised learning)

3. 半监督学习(semi-supervised learning)

4. 强化学习(reinforcement learning)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值