深入了解 Pandas 中的层次化索引(Hierarchical Indexing)

层次化索引(Hierarchical Indexing)是 Pandas 中一种用于处理多维数据的重要功能。它允许在一个轴上拥有多个(两个或更多)索引级别,从而能够更灵活地表示和操作高维数据。

创建多层索引

隐式构造创建多层索引

1.通过给DataFrame构造函数的index参数传递两个或更多的数组
import numpy as np
import pandas as pd
from pandas import DataFrame, Series

columns = [['期中', '期中', '期中', '期中', '期末', '期末', '期末', '期末'], ['语文', '数学', '英语', '综合', '语文', '数学', '英语', '综合']]
index = [['一班', '一班', '一班', '一班', '一班', '二班', '二班','二班', '二班', '二班'], 
         ['张三', '李四', '王五', '赵六', '田七', '孙八', '钱九', '陈十', '赵四', '小明']]
data = np.random.randint(0, 150, size=(10, 8))
df = DataFrame(index=index, data=data, columns=columns)
df
期中 期末
语文 数学 英语 综合 语文 数学 英语 综合
一班 张三 61 68 113 53 17 111 96 24
李四 19 63 138 75 66 87 78 124
王五 5 140 50 141 111 107 78 95
赵六 40 30 26 35 139 100 71 122
田七 23 113 147 106 87 48 108 30
二班 孙八 107 20 65 112 19 38 73 34
钱九 138 135 77 10 3 92 79 30
陈十 24 9 110 95 103 49 19 108
赵四 3 125 22 134 10 112 100 73
小明 8 25 5 124 1 55 71 27
扩展:series也可以创建多层索引
# Series也可以创建多层索引
index = [['一班', '一班', '一班', '一班', '一班', '二班', '二班','二班', '二班', '二班'], 
         ['张三', '李四', '王五', '赵六', '田七', '孙八', '钱九', '陈十', '赵四', '小明']]

data = np.random.randint(0, 150, size=(10, ))
s = Series(data=data, index=index)
s
index 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值