使用 LangChain 构建多轮对话系统:结合 DeepSeek-R1 模型

引言

在构建智能对话系统时,多轮对话能力是提升用户体验的关键。LangChain 提供了强大的工具来实现这一功能。本文将通过一个实际的代码示例,展示如何使用 LangChain 和 DeepSeek-R1 构建一个多轮对话系统,并保存对话的历史记录。

代码解析与技术要点

1. 环境准备与模型创建

import os

from langchain_community.chat_message_histories import ChatMessageHistory
from langchain_core.messages import HumanMessage
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.runnables import RunnableWithMessageHistory
from langchain_openai import ChatOpenAI

os.environ["OPENAI_API_KEY"] = "sk-xxx"

model = ChatOpenAI(
    model='deepseek-reasoner',
    base_url="https://api.deepseek.com"
)

技术要点:参考环境引入和模型创建

2. 定义提示模板

为了使模型能够理解我们的需求,我们需要准备一个合适的 Prompt。以下代码展示了如何构建一个动态的 Prompt 模板,并引入 MessagesPlaceholder 来处理多轮对话:


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值