poj 1063 最短路

用优惠价表示边,求最短路之后,求node【i】。p+dis【i】的最小值

要注意题目中的一句话但是如果他和某个地位较低的人进行了交易,地位较高的的人不会再和他交易,他们认为这样等于是间接接触,反过来也一样。所以,可以枚举等级区间,对每个区间来求最短路

AC代码如下:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

#define MAX 0x3f3f3f3f

struct Edge{
    int weight, next, to;
};

struct Node{
    int p, L;
};

Edge edge[20000];
int head[110], tot;
Node node[110];
int M, N, L, R;

void add_edge( int a, int b, int weight ){
    edge[tot].to = b;
    edge[tot].weight = weight;
    edge[tot].next = head[a];
    head[a] = tot++;
}

int dij(){
    int dis[110];
    bool mark[110];

    memset( mark, false, sizeof( mark ) );
    memset( dis, 0x3f, sizeof( dis ) );
    dis[1] = 0;
    mark[1] = true;
    for( int i = head[1]; i != -1; i = edge[i].next ){
        int to = edge[i].to;
        if( node[to].L >= L && node[to].L <= R ){
            dis[to] = edge[i].weight;
        }
    }
    for( int i = 2; i <= N; i++ ){
        int minid = -1, mindis = MAX;
        for( int j = 1; j <= N; j++ ){
            if( dis[j] < mindis && !mark[j] ){
                minid = j;
                mindis = dis[j];
            }
        }
        if( minid == -1 ){
            break;
        }
        mark[minid] = true;
        for( int j = head[minid]; j != -1; j = edge[j].next ){
            int to = edge[j].to;
            int weight = edge[j].weight;
            if( !mark[to] && dis[to] > dis[minid] + weight && node[to].L >= L && node[to].L <= R ){
                dis[to] = dis[minid] + weight;
            }
        }
    }
    int ans = MAX;
    for( int i = 1; i <= N; i++ ){
        ans = min( ans, dis[i] + node[i].p );
    }
    return ans;
}

int main(){

    while( scanf( "%d%d", &M, &N ) != EOF ){
        memset( head, -1, sizeof( head ) );
        tot = 0;
        for( int i = 1; i <= N; i++ ){
            int temp;
            scanf( "%d%d%d", &node[i].p, &node[i].L, &temp );
            for( int j = 1; j <= temp; j++ ){
                int temp1, temp2;
                scanf( "%d%d", &temp1, &temp2 );
                add_edge( i, temp1, temp2 );
            }
        }
        int ans = MAX;
        for( L = node[1].L - M; L <= node[1].L; L++ ){
            if( L >= 0 ){
                R = L + M;
                ans = min( ans, dij() );
            }
        }
        cout << ans << endl;
    }

    return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
POJ1753题目为"Flip Game",题目给出了一个4x4的棋盘,每个格子有黑色或白色,每次翻转一个格子会同时翻转它上下左右四个格子的颜色,目标是把整个棋盘都变为同一种颜色,求把棋盘变成同种颜色的最小步数。 解题思路: 一般关于棋盘变色的题目,可以考虑使用搜索来解决。对于POJ1753题目,可以使用广度优先搜索(BFS)来解决。 首先,对于每个格子,定义一个状态,0表示当前格子是白色,1表示当前格子是黑色。 然后,我们可以把棋盘抽象成一个长度为16的二进制数,将所有格子的状态按照从左往右,从上往下的顺序排列,就可以用一个16位的二进制数表示整个棋盘的状态。例如,一个棋盘状态为: 0101 1010 0101 1010 则按照从左往右,从上往下的顺序把所有格子的状态连接起来,即可得到该棋盘的状态为"0101101001011010"。 接着,我们可以使用队列来实现广度优先搜索。首先将初始状态加入队列中,然后对于队列中的每一个状态,我们都尝试将棋盘上的每个格子翻转一次,生成一个新状态,将新状态加入队列中。对于每一个新状态,我们也需要记录它是从哪个状态翻转得到的,以便在得到最终状态时能够输出路径。 在搜索过程中,我们需要维护每个状态离初始状态的步数,即将该状态转换为最终状态需要的最小步数。如果我们找到了最终状态,就可以输出答案,即最小步数。 代码实现:

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

team79

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值