题目如下:
4=1+1+1+1
=1+1+2
=1+3
=2+2
比如 数字4 可以被拆解成为如上的四种情况。那么我现在给你一个vector< vector<int> > 你把所有的结果全部的保存到这个
vector< vector<int> > 中。
1.思路:
看到这问题我们可以想到一种方法,如:
4=1+3
3=1+2
2=1+1
也就是这种方式可以将4所能分解的等式中的所有数字全部包含在了里面,我们所要做的就是讲这些数字全部获取到,如何能够获取到呢,我们可以根据题目使用一个vector<int>vec,使用这样的一个全局变量,将1,2,3这样的数字按顺序写入,因此最好的方式就是递归的方式,我们都知道4肯定是包含1,2,3,将这个规律推至数字n,也就是说将n分解,也是可以分解成1-n-1,我们就可以看出这样的规律第一层递归是这样子的,1+n-1 2+n-2. ... [n/2]+[n/2],而第二层递归就变成了对n-1的操作了,如此反复,最终所有的数据就可以都出来了,当然对于格式我们也需要做一些调整,当然格式问题是小问题,主要是算法
代码如下:
#include <iostream>
#include <vector>
#include<algorithm>
using namespace std;
vector<vector<int> > g_vec;
vector<int> g_m_vec;
void merge(int num);
void getEquals(int num);
void show(vector<int>& vec);
int main()
{
int num=10;
getEquals(num);
sort(g_vec.begin(),g_vec.end());
for(int i=0; i<g_vec.size(); i++)
{
show(g_vec[i]);
}
}
void getEquals(int num)
{
if(0>=num)
{
return;
}
for(int i=1; i<= num/2; i++)
{
g_m_vec.push_back(i);
getEquals(num-i);
merge(num-i);
g_m_vec.pop_back();
}
}
bool sort_by(const int& a,const int& b)
{
return a>b;
}
void merge(int num)
{
vector<int> vec;
vector<int>::iterator it;
for(it=g_m_vec.begin(); it!=g_m_vec.end();it++)
{
vec.push_back(*it);
}
vec.push_back(num);
sort(vec.begin(),vec.end(),sort_by);
if(g_vec.end()==find(g_vec.begin(),g_vec.end(),vec))
{
g_vec.push_back(vec);
}
}
void show(vector<int>& vec)
{
for(int i=0;i<vec.size(); i++)
{
cout<<vec[i]<<" ";
}
cout<<endl;
}