算法
文章平均质量分 67
zephyrflow
在信息时代,客观障碍已不复存在,所谓障碍都是主观上的。如果你想研发什么新的技术,你不需要几百万美元的资金,你只需要在冰箱里放满比萨和可乐,再有一台便宜的计算机,和与之献身的决心,你即可拥有任何你想拥有的编程境界- John Carmack
展开
-
HDU 2469 Fire-control System解题报告
这题是一题计算几何题,第一次做计算几何题,出了很多错,WA了半天,最后搜到PROXIMA的解题代码,读懂后仿照着写了下,终于AC了,这题主要的难点在于要从点下手,而不是从角度下手1、两条边扫一圈的时候,最好以点为前进单位,而不要以角度为单位。 虽然这两种方法是等价的,但是后者需要先把角度相同的点都找出来,还要统计各个角度上分别有几个点,这要花费一些初始化的时间。然而,在最差情况下,每个点所在的角度都可以是不同的,那么以角度为前进单位就完全没有必要了,还白白浪费了初始化的时间。2、最好把所有点复制一份,原创 2010-09-04 10:42:00 · 1583 阅读 · 4 评论 -
(资料)Catalan(卡特兰数)的算法分析与应用
<br />什么是Catalan数<br />说到Catalan数,就不得不提及Catalan序列,Catalan序列是一个整数序列,其通项公式是我们从中取出的就叫做第n个Catalan数,前几个Catalan数是:1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, …咋看之下没什么特别的,但是Catalan数却是许多计数问题的最终形式。Catalan数的一些性原创 2010-11-27 10:29:00 · 1273 阅读 · 2 评论 -
(资料)二分图(偶图)最大匹配解法之一匈牙利算法
什么是二分图,什么是二分图的最大匹配,这些定义我就不讲了,网上随便都找得到。二分图的最大匹配有两种求法,第一种是最大流(我在此假设读者已有网络流的知识);第二种就是我现在要讲的匈牙利算法。这个算法说白了就是最大流的算法,但是它跟据二分图匹配这个问题的特点,把最大流算法做了简化,提高了效率。匈牙利算法其实很简单,但是网上搜不到什么说得清楚的文章。所以我决定要写一下。最大流算法的核心问题就是找增广路径(augment path)。匈牙利算法也不例外,它的基本模式就是:初始时最大匹配为空while 找得到增广路径转载 2010-12-01 09:48:00 · 1533 阅读 · 0 评论 -
(转)最大流算法
<br /><br />原帖链接http://www.cnblogs.com/zhuangli/archive/2008/08/01/1258417.html<br />1. 最大流最小割定理介绍:<br />把一个流网络的顶点集划分成两个集合S和T,使得源点s ∈S且汇点t ∈T,割(S,T)的容量C(S,T) =∑Cuv, 其中u∈S且v∈T。<br />从直观上看,截集(S,T)是从源点s到汇点t的必经之路,如果该路堵塞则流从s无法到达t。于是我们可以得到下面的定理:<br /> <br />最原创 2010-12-05 16:19:00 · 619 阅读 · 0 评论 -
一些重要的算法(共计18个)
<br /><br /> 下面是一些比较重要的算法,原文罗列了32个,但我觉得有很多是数论里的,和计算机的不相干,所以没有选取。下面的这些,有的我们经常在用,有的基本不用。有的很常见,有的很偏。不过了解一下也是好事。也欢迎你留下你觉得有意义的算法。(注:本篇文章并非翻译,其中的算法描述大部份摘自Wikipedia,因为维基百科描述的很专业了)A*搜寻算法<br />俗称A星算法。这是一种在图形平面上,有多个节点的路径,求出最低通过成本的算法。常用于游戏中的NPC的移动计算,或线上游戏的BOT的移动计算上。该转载 2010-10-20 20:25:00 · 700 阅读 · 0 评论 -
(转)分支定界法
<br />分支定界 (branch and bound) 算法是一种在问题的解空间树上搜索问题的解的方法。但与回溯算法不同,分支定界算法采用广度优先或最小耗费优先的方法搜索解空间树,并且,在分支定界算法中,每一个活结点只有一次机会成为扩展结点。<br /> 利用分支定界算法对问题的解空间树进行搜索,它的搜索策略是:<br /> 1 .产生当前扩展结点的所有孩子结点;<br /> 2 .在产生的孩子结点中,抛弃那些不可能产生可行解(或最优解)的结点;<br /> 3 .将其余的孩子结点加入活结点表;原创 2010-11-16 20:49:00 · 2213 阅读 · 0 评论 -
(转)十个利用矩阵乘法解决的经典题目
<br />好像目前还没有这方面题目的总结。这几天连续看到四个问这类题目的人,今天在这里简单写一下。这里我们不介绍其它有关矩阵的知识,只介绍矩阵乘法和相关性质。<br /> 不要以为数学中的矩阵也是黑色屏幕上不断变化的绿色字符。在数学中,一个矩阵说穿了就是一个二维数组。一个n行m列的矩阵可以乘以一个m行p列的矩阵,得到的结果是一个n行p列的矩阵,其中的第i行第j列位置上的数等于前一个矩阵第i行上的m个数与后一个矩阵第j列上的m个数对应相乘后所有m个乘积的和。比如,下面的算式表示一个2行2列的矩阵乘以2转载 2011-04-24 19:59:00 · 571 阅读 · 0 评论