论文阅读--Decision-making in Autonomous Driving by Reinforcement Learning Combined with Planning

此图展示了结合规划与控制模块的强化学习(RL)决策模型的总体框架。这个框架说明了决策模型输出动作后,规划与控制模块如何完成横向和纵向的动作分解,并为动作提供相应的合理路径。在横向控制方面,给定一个目标路径点,路径规划器使用A*算法优化路径并生成一系列目标路径点,这些点随后输入到PID控制器的横向控制模块中,以计算自动驾驶车辆的转向角度。在纵向控制方面,通过决策模型给出的期望加速度来计算每个控制周期的目标速度,并输入到PID控制器的纵向控制模块中,以计算自动驾驶车辆的油门值。

结合文章理解:该图展示了一个结合了规划与控制模块的强化学习(RL)决策模型的总体框架。这个框架的核心思想是将RL决策模型与车辆的规划和控制模块相结合,以提高自动驾驶车辆在实际应用中的鲁棒性和现实转移性。下面是对图中各个组件和流程的详细解释:

  1. RL决策模型输出(Action Output)

    • RL决策模型根据当前的环境状态(包括车辆自身的状态和周围环境的信息)输出一个动作指令。这个动作指令通常包括期望的加速度和变道指令。
  2. 规划与控制模块(Planning & Control Module)

    • 规划与控制模块接收RL决策模型输出的动作指令,并将其分解为横向控制(Lateral Control)和纵向控制(Longitudinal Control)两个部分。
    • 横向控制负责处理车辆的转向,纵向控制负责处理车辆的加速和减速。
  3. 横向控制(Lateral Control)

    • 横向控制模块使用A*算法来优化路径,并生成一系列目
自动驾驶领域,基于学习的方法有多种不同的应用和研究方向。 NVIDIA提出的端到端学习方法可用于自动驾驶,他们声称其网络能在驾驶15公里内用少于10次的干预来驾驶汽车,这体现了端到端学习自动驾驶中的应用潜力,可将图像映射到关键变量,进而指导自动驾驶 [^1]。 在基于深度学习自动驾驶系统中,有关于预测和规划的集成研究。模块化的自动驾驶系统常把预测和规划作为连续但单独的任务,这种解耦的方式本质上是被动的,不能表示自车和其他智能体连续的交互;而集成预测和规划(Integrated Prediction and Planning, IPP)可以表示自车和其他智能体连续的交互。相关研究系统性地回顾了最先进的基于深度学习的预测、规划以及综合预测和规划的模型,关注基于深度学习的方法,聚焦智能体之间没有直接或间接通信的场景,不包含行人行为的预测,对集成的预测和规划进行分类,分析各类方法之间的联系及其对安全性和鲁棒性的影响,还揭示了现有方法的不足并指出未来方向 [^2]。 在车辆轨迹预测方面,基于学习的多模态方法有不同的子类别。第一个子类别是单模态轨迹预测方法的多模态扩展,以预期的机动为条件,预测所有行为模式的轨迹,但未解决基于意图操作的单峰模型难以定义全面意图集和在训练数据集中手动标记意图的问题。第二个子类别中的方法可免除这两个问题,因其不需要预定义的意图集,但由于模式的动态定义,容易收敛到单一模式或无法探索所有现有模式 [^3]。 ### 代码示例 虽然没有具体可运行的代码来涵盖所有这些基于学习的方法,但以下是一个简单的基于Python和PyTorch的神经网络示例,展示如何构建一个简单的端到端学习模型框架: ```python import torch import torch.nn as nn # 定义一个简单的端到端神经网络模型 class EndToEndModel(nn.Module): def __init__(self, input_size, output_size): super(EndToEndModel, self).__init__() self.fc1 = nn.Linear(input_size, 128) self.relu = nn.ReLU() self.fc2 = nn.Linear(128, output_size) def forward(self, x): out = self.fc1(x) out = self.relu(out) out = self.fc2(out) return out # 示例输入和输出大小 input_size = 100 output_size = 10 model = EndToEndModel(input_size, output_size) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值