论文阅读--Decision-making in Autonomous Driving by Reinforcement Learning Combined with Planning

结合RL与规划控制提升自动驾驶决策能力

文献题目: Decision-making in Autonomous Driving by Reinforcement Learning Combined with Planning & Control

文献作者

  • Zhe Yang
  • Xiaofei Pei*
  • Jie Xu
  • Xinkang Zhang
  • Wenhai Xi (*表示通讯作者)

文献类型: 这是一篇会议论文(Proceedings),具体属于IEEE(电气和电子工程师协会)出版的会议论文集。

文献信息

  • 会议名称:2022 6th CAA International Conference on Vehicular Control and Intelligence (CVCI)
  • 会议地点:Nanjing, China
  • 会议日期:October 28-30, 2022
  • 文章DOI:10.1109/CVCI56766.2022.9964691
  • 文章ISBN:978-1-6654-5374-5
  • 文章在IEEE Xplore的下载权限:Authorized licensed use limited to: Georgia Institute of Technology.

目录:

  1. 引言(Introduction)
  2. 背景(Background) A. 马尔可夫决策过程(Markov Decision Process) B. 双深度Q学习网络(DDQN)
  3. 问题陈述(Problem Statement) A. 总体框架(Overall Framework) B. 场景和状态(Scenario and State)
  4. 实验(Experiment) A. 引导训练(Guided Training) B. 安全规则(Safety Rules) C. 动作掩码(Action Masking) D. 结果分析(Result Analysis)
  5. 结论(Conclusion)

摘 要

       近年来,强化学习(RL)算法在自动驾驶模拟实验中表现出色。但是,模拟实验过于理想化,在实际应用中无法保证安全,没有考虑动作实施误差。因此,本文提出了一种结合RL决策模型与规划&控制模块的方法。在本文中,选择了DDQN作为模型自由深度强化学习(DRL)决策模型的算法,选择了A*作为路径规划器的算法,选择了PID作为控制器的算法,在CARLA中进行演示,以在考虑实际车辆动力学模型和动作实施误差的同时做出准确决策,并提高RL决策算法的鲁棒性和现实转移性。提出了几项改进措施,实验表明,所提出的GRS-DDQN在测试性能上优于基线DDQN,无碰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值