文献题目: Decision-making in Autonomous Driving by Reinforcement Learning Combined with Planning & Control
文献作者:
- Zhe Yang
- Xiaofei Pei*
- Jie Xu
- Xinkang Zhang
- Wenhai Xi (*表示通讯作者)
文献类型: 这是一篇会议论文(Proceedings),具体属于IEEE(电气和电子工程师协会)出版的会议论文集。
文献信息:
- 会议名称:2022 6th CAA International Conference on Vehicular Control and Intelligence (CVCI)
- 会议地点:Nanjing, China
- 会议日期:October 28-30, 2022
- 文章DOI:10.1109/CVCI56766.2022.9964691
- 文章ISBN:978-1-6654-5374-5
- 文章在IEEE Xplore的下载权限:Authorized licensed use limited to: Georgia Institute of Technology.
目录:
- 引言(Introduction)
- 背景(Background) A. 马尔可夫决策过程(Markov Decision Process) B. 双深度Q学习网络(DDQN)
- 问题陈述(Problem Statement) A. 总体框架(Overall Framework) B. 场景和状态(Scenario and State)
- 实验(Experiment) A. 引导训练(Guided Training) B. 安全规则(Safety Rules) C. 动作掩码(Action Masking) D. 结果分析(Result Analysis)
- 结论(Conclusion)
摘 要
近年来,强化学习(RL)算法在自动驾驶模拟实验中表现出色。但是,模拟实验过于理想化,在实际应用中无法保证安全,没有考虑动作实施误差。因此,本文提出了一种结合RL决策模型与规划&控制模块的方法。在本文中,选择了DDQN作为模型自由深度强化学习(DRL)决策模型的算法,选择了A*作为路径规划器的算法,选择了PID作为控制器的算法,在CARLA中进行演示,以在考虑实际车辆动力学模型和动作实施误差的同时做出准确决策,并提高RL决策算法的鲁棒性和现实转移性。提出了几项改进措施,实验表明,所提出的GRS-DDQN在测试性能上优于基线DDQN,无碰
结合RL与规划控制提升自动驾驶决策能力

最低0.47元/天 解锁文章
382

被折叠的 条评论
为什么被折叠?



