RAG优化

RAG搭建本地AI知识库,在使用过程中遇到的三大痛点,以及相应的进阶方案。



1. RAG知识库的三大痛点

-- 


内容理解不足:

AI难以全面理解导入资料的内容,比如在向量编码时候,生硬的截断等导致分析结果不理想。

eg: 知识库分割器造成截断。


信息提取不准确:

AI在提取关键信息时可能存在偏差,RAG靠输入的检索字符的向量编码,和知识库中的向量编码对比,影响最终结论的准确性。


综合分析能力有限:

AI无法像人类一样进行复杂的逻辑推理和综合分析,导致结论缺乏深度。

比如:一个excel文档,有300条数据,因为rag切分之后,无法求出整个文档的最大或最小值


2. 进阶方案



引入重排序模型:

通过优化内容的排序逻辑,提高信息提取的准确性。


使用数据库MCP Server:

利用MCP(Model Context Protocol)技术,增强AI知识库的存储和处理能力。

比如:使用postgre mcp server,连接数据库,进行数据的分析。


借助超大上下文模型:

通过扩展模型的上下文能力,提升AI对复杂内容的理解与分析能力。

现在大模型的发展,prompt 长度越来越长,可以直接把整个文档或者资料库,投给大模型。


5. 实用工具和资源


CherryStudio下载:用户可以通过Cherry-ai.com下载CherryStudio。
硅基流动:访问硅基流动获取更多模型资源。
PostGreSQL MCP:通过GitHub上的PostGreSQL MCP了解更多MCP相关技术。

### 优化RAG模型性能或系统调优方法 优化RAG(Retrieval-Augmented Generation)模型的性能可以通过调整多个参数和策略来实现。以下是一些关键方法,结合了站内引用内容以及相关领域的专业知识[^1]。 #### 数据质量与预处理 高质量的数据是提升RAG性能的基础。在构建本地知识库时,数据清洗是一个重要环节。确保数据的准确性和一致性,同时去除噪声和冗余信息,可以显著提高检索模块的效率[^2]。此外,对数据进行结构化处理,例如将非结构化文本转化为结构化表示,有助于增强检索器的理解能力。 #### 检索模块优化 检索模块是RAG的核心组成部分之一。通过改进检索算法,如使用更先进的向量相似度计算方法(如SimCSE、DPR等),可以提升检索的精度和速度。此外,引入高效的索引技术(如FAISS、Annoy)能够加速大规模数据集上的检索过程[^3]。 #### 生成模块优化 生成模块的质量直接影响最终输出的效果。可以通过微调预训练语言模型(如GPT-3.5、DeepSeek R1等)来适配特定任务的需求。提示工程(Prompt Engineering)在这一阶段尤为重要,合理设计指令和输入格式能够引导模型生成更符合预期的结果。例如,采用思维链(Chain of Thought)或思维树(Tree of Thoughts)的方法,可以帮助模型逐步推理并得出结论。 #### 参数调优 类似于深度学习中的超参数调整,RAG系统中也存在许多可调节的参数。例如,检索结果的数量、生成长度限制、温度值(Temperature)等都会影响最终效果。通过实验性地调整这些参数,并结合实际应用场景的需求,可以找到最佳配置。 #### 性能监控与反馈机制 建立性能监控体系,定期评估RAG系统的各项指标(如召回率、精确率、生成质量等)。根据评估结果不断迭代优化模型,并引入用户反馈机制以持续改进系统表现。 ```python # 示例代码:使用DPR进行文档检索 from transformers import DPRContextEncoder, DPRQuestionEncoder question_encoder = DPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base") context_encoder = DPRContextEncoder.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base") def encode_question(question): question_embedding = question_encoder(question).pooler_output return question_embedding def encode_context(context): context_embedding = context_encoder(context).pooler_output return context_embedding ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值