[FROM LUOGU]P2679 子串

P2679 子串

传送门

SOL
f [ i ] [ j ] [ k ] f[i][j][k] f[i][j][k]表示在A串的前 i i i个,B串的前 j j j个中,匹配了 k k k个子串的方案数。
s [ i ] [ j ] [ k ] s[i][j][k] s[i][j][k]表示在A串的前 i i i个,B串的前 j j j个中,匹配了 k k k个子串,并且 a [ i ] = b [ j ] a[i]=b[j] a[i]=b[j] i i i j j j在匹配当中的方案数的方案数。
于是有状态转移方程:
f [ i ] [ j ] [ k ] = f [ i − 1 ] [ j ] [ k ] + s [ i ] [ j ] [ k ] f[i][j][k]=f[i-1][j][k]+s[i][j][k] f[i][j][k]=f[i1][j][k]+s[i][j][k]
s [ i ] [ j ] [ k ] = ( a [ i ] = = b [ j ] ) ? s [ i − 1 ] [ j − 1 ] [ k ] + f [ i − 1 ] [ j − 1 ] [ k − 1 ] : 0 s[i][j][k]=(a[i]==b[j])?s[i-1][j-1][k]+f[i-1][j-1][k-1]:0 s[i][j][k]=(a[i]==b[j])?s[i1][j1][k]+f[i1][j1][k1]:0
即:当 a [ i ] a[i] a[i] b [ j ] b[j] b[j]匹配时,可以和上一个子串连接起来,也可以不连。
然后第一维可以滚动掉。
其实说白了, f [ i ] [ j ] f[i][j] f[i][j]就是 s [ i ] [ j ] s[i][j] s[i][j]的前缀和

#include<bits/stdc++.h>
using namespace std;
#define re register
const int N=201,mod=1e9+7;
char a[1001],b[N];
int f[N][N]={1},s[N][N],n,K,m;
signed main(){
	ios::sync_with_stdio(false);
	cin>>n>>m>>K>>a>>b;
	for(int re i=1;i<=n;++i)
		for(int re j=m;j;--j)
			for(int re k=K;k;--k)
				f[j][k]=(f[j][k]+(s[j][k]=(a[i-1]==b[j-1]?(s[j-1][k]+f[j-1][k-1])%mod:0)))%mod;
	cout<<f[m][K],exit(0);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值