P2679 子串
SOL
设
f
[
i
]
[
j
]
[
k
]
f[i][j][k]
f[i][j][k]表示在A串的前
i
i
i个,B串的前
j
j
j个中,匹配了
k
k
k个子串的方案数。
设
s
[
i
]
[
j
]
[
k
]
s[i][j][k]
s[i][j][k]表示在A串的前
i
i
i个,B串的前
j
j
j个中,匹配了
k
k
k个子串,并且
a
[
i
]
=
b
[
j
]
a[i]=b[j]
a[i]=b[j]且
i
i
i,
j
j
j在匹配当中的方案数的方案数。
于是有状态转移方程:
f
[
i
]
[
j
]
[
k
]
=
f
[
i
−
1
]
[
j
]
[
k
]
+
s
[
i
]
[
j
]
[
k
]
f[i][j][k]=f[i-1][j][k]+s[i][j][k]
f[i][j][k]=f[i−1][j][k]+s[i][j][k]
s
[
i
]
[
j
]
[
k
]
=
(
a
[
i
]
=
=
b
[
j
]
)
?
s
[
i
−
1
]
[
j
−
1
]
[
k
]
+
f
[
i
−
1
]
[
j
−
1
]
[
k
−
1
]
:
0
s[i][j][k]=(a[i]==b[j])?s[i-1][j-1][k]+f[i-1][j-1][k-1]:0
s[i][j][k]=(a[i]==b[j])?s[i−1][j−1][k]+f[i−1][j−1][k−1]:0
即:当
a
[
i
]
a[i]
a[i],
b
[
j
]
b[j]
b[j]匹配时,可以和上一个子串连接起来,也可以不连。
然后第一维可以滚动掉。
其实说白了,
f
[
i
]
[
j
]
f[i][j]
f[i][j]就是
s
[
i
]
[
j
]
s[i][j]
s[i][j]的前缀和
#include<bits/stdc++.h>
using namespace std;
#define re register
const int N=201,mod=1e9+7;
char a[1001],b[N];
int f[N][N]={1},s[N][N],n,K,m;
signed main(){
ios::sync_with_stdio(false);
cin>>n>>m>>K>>a>>b;
for(int re i=1;i<=n;++i)
for(int re j=m;j;--j)
for(int re k=K;k;--k)
f[j][k]=(f[j][k]+(s[j][k]=(a[i-1]==b[j-1]?(s[j-1][k]+f[j-1][k-1])%mod:0)))%mod;
cout<<f[m][K],exit(0);
}