矩阵学习笔记(持续更新中)

矩阵

矩阵及其运算

矩阵的概念

m m mx n n n个数 a a aij ( i = 1 , 2 , . . . , m ; j = 1 , 2 , . . . n ) (i=1,2,...,m;j=1,2,...n) (i=1,2,...,m;j=1,2,...n)排成 m m m n n n列的矩形数表称为 m m mx n n n矩阵,记作 A = ( a A=(a A=(aij ) ) )mxn
简记为 A A Amxn,当 m = n m=n m=n是称其为 n n n阶方阵
e . g . e.g. e.g.
[ 1 0 0 0 1 0 0 0 1 ] \begin{bmatrix} 1&0&0\\ 0&1&0\\ 0&0&1 \end{bmatrix} 100010001
1 1 1x n n n的矩阵称为 n n n维行向量
n n nx 1 1 1的矩阵称为 n n n为列向量
所有元素均为0的矩阵称为0矩阵,记作0mxn
A A Amxn B B Bmxn称为同型矩阵,在此基础上,若 ∀ a \forall a aij = b =b =bij,称 A A A B B B相等,记作 A = B A=B A=B

矩阵的运算

  1. 矩阵的加法
    对于同型矩阵 A A Amxn B B Bmxn,矩阵 C C Cmxn = ( a =(a =(aij + b +b +bij ) ) )mxn
    矩阵加法满足交换律结合律
    A + B = 0 A+B=0 A+B=0,称 B B B A A A的负矩阵,记作 − A -A A
  2. 矩阵的数量乘法
    A = ( a A=(a A=(aij ) ) )mxn,则 k A = ( k a kA=(ka kA=(kaij ) ) )mxn称为 k k k A A A的数量乘法,记作 k A kA kA
    定理
    k ( l A ) = l ( k A ) = ( k l ) A k(lA)=l(kA)=(kl)A k(lA)=l(kA)=(kl)A
    k ( A + B ) = k A + k B k(A+B)=kA+kB k(A+B)=kA+kB
    ( k + l ) A = k A + l A (k+l)A=kA+lA (k+l)A=kA+lA
  3. 矩阵的乘法
    假设 A = ( a A=(a A=(aij ) ) )mxl , B = ( b ,B=(b B=(bij ) ) )lxn
    C = ( c C=(c C=(cij ) ) )mxn
    其中 C C Cij = ∑ a =\sum a =aik b b bkj
    矩阵乘法不满足交换律
    A B = 0 AB=0 AB=0不能得出 A = 0 A=0 A=0 B = 0 B=0 B=0
    A ≠ 0 A\neq0 A=0,由 A B − A C = 0 AB-AC=0 ABAC=0不能推出 B = C B=C B=C
    定理
    A ( B C ) = ( A B ) C A(BC)=(AB)C A(BC)=(AB)C
    k ( A B ) = ( k A ) B = A ( k B ) k(AB)=(kA)B=A(kB) k(AB)=(kA)B=A(kB)
    A ( B + C ) = A B + A C , ( B + C ) A = B A + C A A(B+C)=AB+AC,(B+C)A=BA+CA A(B+C)=AB+AC,(B+C)A=BA+CA
  4. 方阵的幂乘
    A k A l
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值