《王道》数据结构之绪论(一)

本文深入探讨数据结构的逻辑结构,包括集合、线性、树形和图状结构,以及物理存储的顺序、链式、索引和散列方法。同时,阐述算法的基本特性,如正确性、可读性和效率,并通过时间复杂度和空间复杂度分析评估算法性能。此外,介绍了Master公式在分析算法效率中的应用。
摘要由CSDN通过智能技术生成


大纲

在这里插入图片描述


一、数据结构

1.1 基本概念

术语解释
数据
数据元素和数据项
数据对象具有相同性质的数据元素的集合,是数据的一个子集
数据结构相互之间存在一种或多种特定关系的数据元素的集合
数据类型值的集合和定义在此集合上的一组操作的总称(原子类型和结构类型)
抽象数据类型(Abstract Data Type)是抽象数据组织及与之相关的操作,数学化的语言定义数据的逻辑结构、定义运算。与具体的实现无关。

在这里插入图片描述

1.2 数据结构三要素

1.2.1 逻辑结构

分类一:

常用逻辑结构解释
集合结构
线性结构一对一
树形结构一对多
图状结构多对多

分类二:

常用逻辑结构解释
线性结构线性表、栈、队列、数组
非线性结构集合、树、图

1.2.2 物理结构

指数据结构在计算机中的表示或映像。存储结构会影响数据运算的速度、存储空间分配的方便与否

常用存储结构解释
顺序存储(下面三种为非顺序存储)
链式存储
索引存储附加一个索引表(索引项=关键字+地址)
散列存储(哈希存储)根据元素的关键字计算该元素的存储地址
  • 每种结构的优缺点

1.2.3 数据运算

每个逻辑结构都有自己的基本的数据运算

  • 运算的定义是针对逻辑结构的,指出运算的功能
  • 运算的实现是针对存储结构的,指出运算的具体操作步骤(即不同存储结构有着不同的实现)

二、算法

2.1 基本概念

2.1.1 五个特性

  • 有穷性
    算法必须是有穷的,而程序可以是无穷的
  • 确定性
    相同的输入只能得出相同的输出
  • 可行性
    能通过基本操作实现算法
  • 输入
  • 输出
    算法处理的结果

2.1.2 优秀算法的标准

  • 正确性
  • 可读性
  • 健壮性
    能处理异常状况
  • 高效率与低存储

2.2 算法效率度量

2.2.1 时间复杂度分析

事前预估算法时间开销T(n)与问题规模n的关系(T表示“time”)
在这里插入图片描述
助记:常对幂指阶

  • 一般只需挑循环中的一个基本操作分析它的执行次数与n的关系即可,如果有多层嵌套循环,只需关注最深层循环循环了几次
  • 存在不同情况讨论时,平均时间复杂度=各个情况的循环次数与概率的加权和

可以只考虑阶数高的部分
问题规模足够大时,常数项可以忽略
大O表示“同阶”,同等数量级
多项相加,只保留最高阶项;多项相乘都保留

2.2.2 空间复杂度分析

空间开销(内存开销)与问题规模n的关系
在这里插入图片描述

  1. 普通程序
    内存装入程序代码和数据,一般程序代码与问题规模无关,而数据格式:
单一变量O(1)
一维数组O(n)
k维数组O(nk
  1. 递归程序
    空间复杂度=递归调用的深度×数据格式

2.2.3 master公式

递归函数可表示成T(N) = a * T(N/b) + O(Nd)

  • logba > d时,时间复杂度为O(Nlogba)
  • logba < d时,时间复杂度为O(Nd)
  • logba = d时,时间复杂度为O(Nd * log2N)

总结

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值