Description
圆桌旁坐着n个人,每人有一定数量的金币,金币总数能被n整除。每个人可以给他左右相邻的人一些金币,最终使得每个人的金币数相等。你的任务是求出被转手的金币数量的最小值。比如,n=4,且4个人的金币数分别为1,2,5,4时,只需转移4枚金币(第3个人给第2个人两枚金币,第2个人和第4个人分别给第1 个人1枚金币)即可实现每人手中的金币数目相等。
Input
输入包含多组数据。每组数据第一行为整数n(n<=1 000 000),以下n行每行为一个整数,按逆时针顺序(看了下题解好像并不是逆时针的意思!!)给出每个人拥有的金币数。输入结束标志为文件结束符(EOF)。
Output
对于每组数据,输出被转手金币数量的最小值。输入保证这个值在64位无符号整数范围内。
Sample Input
3 100 100 100 4 1 2 5 4
Sample Output
0 4
思路:
1.我们记x1为 1号给最后一个人的金币数(可为负数),x2为 2号给1号的金币数...以此类推
2.我们记a[1]为 1号最初有的金币数,a[2]为 2号最初有的金币数...以此类推
3.我们知道,每个人最终的金币数是他们金币总数的平均数avg
4.所以,每一个人手上金币数的变化是这样的:a[i]-x[i]+x[i+1]=avg(我本来有的金币数-我给前一个人的金币数+我后一个人给我的金币数=平均数)
5.转化一下,用其他数表达x[i+1],x[i+1]=avg-a[i]+x[i]
基本就思路如下图,
6.简化后的x[i]表达式就是求Ci到x1的距离,这里就用到中位数,所以我们先递推上图中的Ci,找到中位数x1
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <iostream>
using namespace std;
long long a[1000005],b[1000005];
int main(){
long long n,i,sum,avg;
while(scanf("%lld",&n)!=EOF){
sum=0;
for(i=1;i<=n;i++){
scanf("%lld",&a[i]);//各自的金币
sum+=a[i];
}
avg=sum/n;//每个人手上最终的金币数
b[0]=0;
for(i=1;i<n;i++){
b[i]=b[i-1]+a[i]-avg;//这个推导的递推是上面图中的C
}
sort(b,b+n);
long long x1=b[n/2],ans=0;
for(i=0;i<n;i++){
ans+=abs(x1-b[i]);//回带求最小移动金币数
}
printf("%lld\n",ans);
}
return 0;
}